The matrix sign function

$$
\operatorname{sign}(x)= \begin{cases}1 & \operatorname{Re} x>0 \\ -1 & \operatorname{Re} x<0 \\ \text { undefined } & \operatorname{Re} x=0\end{cases}
$$

Suppose the Jordan form of A is reblocked as

$$
A=\left[\begin{array}{ll}
V_{1} & V_{2}
\end{array}\right]\left[\begin{array}{ll}
J_{1} & \\
& J_{2}
\end{array}\right]\left[\begin{array}{ll}
V_{1} & V_{2}
\end{array}\right]^{-1}
$$

where J_{1} contains all eigenvalues in the LHP (left half-plane) and J_{2} in the RHP. Then,

$$
\operatorname{sign}(A)=\left[\begin{array}{ll}
V_{1} & V_{2}
\end{array}\right]\left[\begin{array}{ll}
-l & \\
& 1
\end{array}\right]\left[\begin{array}{ll}
V_{1} & V_{2}
\end{array}\right]^{-1}
$$

$\operatorname{sign}(A)$ is always diagonalizable with eigenvalues $\pm 1 . \operatorname{sign}(A) \pm I$ gives the projections on the span of the eigenvectors in the RHP/LHP (unstable/stable invariant subspace).

Sign and square root

Useful formula: $\operatorname{sign}(A)=A\left(A^{2}\right)^{-1 / 2}$, where $A^{1 / 2}$ is the principal square root of A (all eigenvalues in the right half-plane), and $A^{-1 / 2}$ is its inverse.
Proof: consider eigenvalues, $\operatorname{sign}(x)=\frac{x}{\left(x^{2}\right)^{1 / 2}}$. (Care with signs.)

Theorem

If $A B$ has no eigenvalues on $\mathbb{R}_{\leq 0}$ (hence neither does $B A$), then

$$
\operatorname{sign}\left[\begin{array}{ll}
0 & A \\
B & 0
\end{array}\right]=\left[\begin{array}{cc}
0 & C \\
C^{-1} & 0
\end{array}\right], \quad C=A(B A)^{-1 / 2}
$$

Proof (sketch) Use $\operatorname{sign}(A)=A\left(A^{2}\right)^{-1 / 2}\left(\right.$ and then $\left.\operatorname{sign}(A)^{2}=I\right)$.
For instance,

$$
\operatorname{sign}\left[\begin{array}{ll}
0 & A \\
1 & 0
\end{array}\right]=\left[\begin{array}{cc}
0 & A^{1 / 2} \\
A^{-1 / 2} & 0
\end{array}\right]
$$

Conditioning

From the theorems on the Fréchet derivative, for a diagonalizable A

$$
\kappa_{\text {abs }}(\operatorname{sign}(A)) \leq \kappa_{2}(V) \frac{2}{\min _{\operatorname{Re} \lambda_{i}<0, \operatorname{Re} \lambda_{j}>0}\left|\lambda_{i}-\lambda_{j}\right|}
$$

Tells only part of the truth: computing $\operatorname{sign}(A)$ is "better" than a full diagonalization: it is not sensitive to close eigenvalues that are far from the imaginary axis.

Condition number

Theorem

$$
\kappa_{\text {abs }}(\operatorname{sign}, A)=\left\|\left(I \otimes N+N^{T} \otimes I\right)^{-1}\left(I-S^{T} \otimes S\right)\right\|
$$

where $N=\left(A^{2}\right)^{1 / 2}$.
Proof (sketch): let $L=L_{\text {sign }, A}(E)$. Then, up to second-order factors, $(A+E)(S+L)=(S+L)(A+E)$ and $(S+L)^{2}=I$. Some manipulations give $N A+A N=E-S E S$.

In particular, $\operatorname{sep}(N,-N)$ plays a role.
Remark: if all eigenvalues of A are in the RHP, then the formula gives $\kappa_{\text {abs }}(\operatorname{sign}, A)=0$.
Makes sense, since $\operatorname{sign}(A)=\operatorname{sign}(A+E)=I$ for all E for which eigenvalues do not cross the imaginary axis...

Schur-Parlett method

We can compute $\operatorname{sign}(A)$ with a Schur decomposition. It makes sense to reorder it so that eigenvalues in the LHP come first: $\Lambda\left(T_{11}\right) \subseteq L H P, \Lambda\left(T_{22}\right) \subseteq R H P$.

$$
Q^{*} A Q=\left[\begin{array}{cc}
T_{11} & T_{12} \\
0 & T_{22}
\end{array}\right], \quad Q^{*} f(A) Q=\left[\begin{array}{cc}
-I & X \\
0 & I
\end{array}\right]
$$

where X solves

$$
T_{11} X-X T_{22}=-f\left(T_{11}\right) T_{12}+T_{12} f\left(T_{22}\right)=-2 T_{12}
$$

Condition number of this Sylvester equation: depends on $\operatorname{sep}\left(T_{11}, T_{22}\right)$.

Schur-Parlett for the sign

1. Compute $A=Q T Q^{T}$.
2. Reorder Schur decomposition so that eigenvalues in the LHP come first.
3. Solve Sylvester equation for X.
4. $\operatorname{sign}(A)=Q\left[\begin{array}{ccc}-1 & 1 \\ 0 & 1\end{array}\right] Q^{T}$.
(Matlab example)

Newton for the matrix sign

Most popular algorithm:

Newton for the matrix sign

$\operatorname{sign}(A)=\lim _{k \rightarrow \infty} X_{k}$, where

$$
X_{k+1}=\frac{1}{2}\left(X_{k}+X_{k}^{-1}\right), \quad X_{0}=A
$$

Suppose A diagonalizable: then we may consider the scalar version of the iteration on each eigenvalue λ :

$$
x_{k+1}=\frac{1}{2}\left(x_{k}+\frac{1}{x_{k}}\right)=\frac{x_{k}^{2}+1}{2 x_{k}}, \quad x_{0}=\lambda .
$$

Fixed points: ± 1 (with local quadratic convergence). Eigenvalues in the RHP stay in the RHP (and same for LHP).
(It's Newton's method on $f(x)=x^{2}-1$, which justifies the name).

Convergence analysis of the scalar iteration

Trick: change of variables (Cayley transform)

$$
y=\frac{1+x}{1-x}, \text { with inverse } x=\frac{y-1}{y+1}
$$

If $x \in$ RHP, then $|x+1|>|x-1| \Longrightarrow y$ outside the unit disk. If $x \in \operatorname{LHP}$, then $|x-1|>|x+1| \Longrightarrow y$ inside the unit disk. ("Poor man's exponential")
$x_{k+1}=\frac{1}{2}\left(x_{k}+\frac{1}{x_{k}}\right)$ corresponds to $y_{k+1}=-y_{k}^{2}$ (check it!).
If we start from $x_{0} \in \operatorname{LHP}$, then $\left|y_{0}\right|<1$, then $\lim y_{k}=0$ (i.e., $\lim x_{k}=-1$).
If we start from $x_{0} \in$ RHP, then $\left|y_{0}\right|>1$, the squares diverge, and $\lim y_{k}=\infty\left(\right.$ i.e., $\left.\lim x_{k}=1\right)$.

Convergence analysis of the matrix iteration

The same proof works, as long as A does not have the eigenvalue 1 (invertibility). Small modification to fix this case, too:
Change of variables:
$Y_{k}=\left(X_{k}-S\right)\left(X_{k}+S\right)^{-1}, \quad$ with inverse $X_{k}=\left(I-Y_{k}\right)^{-1}\left(I+Y_{k}\right) S$.
All the X_{k} are rational functions of A, so they commute with it and with S.
Analyzing eigenvalues: the inverse exists and $\rho\left(Y_{k}\right)<1$.

$$
Y_{k+1}=\left(X_{k}^{-1}\left(X_{k}^{2}+I-2 S X_{k}\right)\right) X_{k}\left(X_{k}^{2}+I+2 S X_{k}\right)^{-1}=Y_{k}^{2}
$$

$Y_{k} \rightarrow 0$, hence $X_{k} \rightarrow S$.

The algorithm

1. $X_{0}=A$.
2. Repeat $X_{k+1}=\frac{1}{2}\left(X_{k}+X_{k}^{-1}\right)$, until convergence.

We really need to compute that matrix inverse (unusual in numerical linear algebra...)

Scaling

If $x_{k} \gg 1$, then

$$
x_{k+1}=\frac{1}{2}\left(x_{k}+\frac{1}{x_{k}}\right) \approx \frac{1}{2} x_{k},
$$

and "the iteration is an expensive way to divide by 2 " [Higham]. Same if $x_{k} \ll 1$: the iteration just multiplies by 2 .

Similarly, for matrices, convergence cannot occur until each eigenvalue has converged to ± 1.

Trick: replace A with μA for a scalar $\mu>0$ - they have the same sign. Choose this μ so that eigenvalues ≈ 1.
(Once, or at each step.)

Scaling possibilities

Possibility 1: (determinantal scaling): choose $\mu=(\operatorname{det} A)^{-1 / n}$, so that $\operatorname{det} A=1$. Reduces "mean distance" from 1. Cheap to compute, since we already need to invert A.
Possibility 2: (spectral scaling): choose μ so that $\left|\lambda_{\min }(\mu A) \lambda_{\max }(\mu A)\right|=1$. (We can use the power method to estimate them.)
Possibility 3: (norm scaling): choose μ so that $\sigma_{\min }(\mu A) \sigma_{\max }(\mu A)=1$. (Again via the power method for $\sigma_{\text {min }}$.)

Surprisingly, on a matrix with real eigenvalues Possibility 2 gives convergence in a finite number of iterations, if done at each step: the first iteration maps $\lambda_{\text {min }}(A)$ and $\lambda_{\max }(A)$ to eigenvalues with the same modulus; then the second iteration adds a third eigenvalue with the same modulus...

Other iterations

There is an elegant framework to determine other iterations locally convergent to $\operatorname{sign}(x)$ (in a neighbourhood of ± 1): start from

$$
\operatorname{sign}(z)=\frac{z}{\left(z^{2}\right)^{1 / 2}}
$$

and replace the square root using a Padé approximant of $(1-x)^{1 / 2}$.
In the end, they produce iteration functions of the form

$$
f_{r}(z)=\frac{(1+z)^{r}+(1-z)^{r}}{(1+z)^{r}-(1-z)^{r}}
$$

Advantage of using the Newton-sign iteration: it has the correct basins of attraction (convergence is global and not only local).

Stability of the sign iterations

The stability analysis is complicated. [Bai Demmel '98 and Byers

Mehrmann He '97]

While it works well in practice, the Newton iteration is not backward stable.
The sign is not even stable under small perturbations: assuming (up to a change of basis) $A=\left[\begin{array}{cc}A_{11} & A_{12} \\ 0 & A_{22}\end{array}\right]$, then

$$
\|\operatorname{sign}(A+E)-\operatorname{sign}(A)\| \lesssim \frac{\|E\|}{\operatorname{sep}\left(A_{11}, A_{22}\right)^{3}}
$$

Nevertheless, the invariant subspaces it produces are: $A+E$ has a stable invariant subspace of the form $\left[\begin{array}{c}1 \\ x\end{array}\right]$, with

$$
\|X\| \lesssim \frac{\|E\|}{\operatorname{sep}\left(A_{11}, A_{22}\right)}
$$

(Cfr. invariant subspace stability bound from the first lectures.)

Inversion-free sign

Suppose that we are given M, N such that $A=M^{-1} N$. Can we compute $\operatorname{sign}(A)$ without inverting M ? Yes.

$$
\begin{aligned}
X_{1} & =\frac{1}{2}\left(A+A^{-1}\right)=\frac{1}{2}\left(M^{-1} N+N^{-1} M\right) \\
& =\frac{1}{2} M^{-1}\left(N+M N^{-1} M\right) \\
& =\frac{1}{2} M^{-1}\left(N+\hat{M}^{-1} \hat{N} M\right) \\
& =\frac{1}{2} M^{-1} \hat{M}^{-1}(\hat{M} N+\hat{N} M) \\
& =(\hat{M} M) \frac{1}{2}(\hat{M} N+\hat{N} M)=: M_{1}^{-1} N_{1}
\end{aligned}
$$

assuming we can find \hat{M}, \hat{N} such that $M N^{-1}=\hat{M}^{-1} \hat{N}$.
Then the same computations produce $M_{2}, N_{2}, M_{3}, N_{3}, \ldots$

Inversion-free sign

How to find \hat{M}, \hat{N} such that $M N^{-1}=\hat{M}^{-1} \hat{N}$?
$\hat{M} M=\hat{N} N$, or $\left[\begin{array}{ll}\hat{M} & \hat{N}\end{array}\right]\left[\begin{array}{c}M \\ -N\end{array}\right]=0$. We can obtain \hat{M}, \hat{N} from a kernel.

Computing this kernel can be much more accurate than inverting M and/or N, e.g.,

$$
\left[\begin{array}{c}
M \\
-N
\end{array}\right]=\left[\begin{array}{ll}
1 & 0 \\
0 & \varepsilon \\
\varepsilon & 0 \\
0 & 1
\end{array}\right]
$$

All this is a sort of 'linear algebra on pencils': we map $N-x M$ to $N_{1}-x M_{1}$ (one final project on this).

