
Functions of large-scale matrices
How do we compute f (A) if A is large and sparse? Huge recent
research topic.

Most of the time, one wants f (A)b rather than f (A), because f (A)
is full (unless f and A are special, e.g., square of a banded matrix).
The main techniques are those we have seen in the beginning.
I Replace f with an approximating polynomial (or rational

function) on a region U that includes the spectrum of A
(how?).

I Contour integration:

1
2πi

∫
Γ

f (z)(zI − A)−1dz ≈
n∑

k=1
wk f (xk)(xk I − A)−1.

I Ad-hoc methods, involving e.g. discretization of differential
equations: for instance, exp(A)b = v(1) where v̇(t) = Av(t),
v(0) = b.



Arnoldi for matrix functions
Another possibility with the “Swiss-army knife algorithm” for large
matrices: Arnoldi.

Let us recap Arnoldi (with matrix functions in mind).

Krylov subspace

Kn(A, b) = span(b,Ab,A2b, . . . ,An−1b)
= {p(A)b : p polynomial of degree < n}.

Suppose we have computed the vectors b,Ab,A2b, . . . ,An−1b,Anb
explicitly.
This gives us a “recipe” to evaluate Av for any v ∈ Kn(A, b):

Av = A(α0b + α1Ab + · · ·+ αn−1An−1b) = p(A)b
= (α0Ab + α1A2b + · · ·+ αn−1Anb) = Ap(A)b.



Towards Arnoldi
This recipe often is not satisfying: b,Ab,A2b, . . .An−1b converge
to the leading eigenvector of A (power method), so when n gets
large these vectors tend to be parallel (and often also huge/small).

Some tasks, e.g. determining α0, . . . , αn−1 given v , are hopelessly
ill-conditioned:

Vn =
[
b Ab . . . An−1b

]
, a =


α0
α1
...

αn−1

 = (V ∗n Vn)−1V ∗n v .

It would be much better to work with an orthogonal basis of
Im Vn = Kn(A, b), e.g., the Q factor of V = QR: then the
coordinates are given by a = V ∗n−1v .



Arnoldi as “recipe”
The “recipe” for Av comes from the columns of

A
[
b Ab . . . An−1b

]
=

[
b Ab . . .An−1b Anb

]


0
1 . . .

. . . 0
1 0

1


.

With (nested) orthonormal bases of Vn and Vn+1, it becomes

A
[
v1 v2 . . . vn

]
︸ ︷︷ ︸

Vn

=
[
v1 v2 . . . vn vn+1

]
︸ ︷︷ ︸

vn+1

Hn

for a certain Hn ∈ C(n+1)×n (to be determined).



Arnoldi iteration
We can compute the vj one after the other: suppose we already
have v1, . . . , vj . Then,

Avj = v1α1,j + v2α2,j + · · ·+ vjαj−1,j + vj+1αj+1,j

Thanks to orthogonality, we can compute and subtract
v∗i Avj = αi ,j for i = 1, . . . , j , and we are left with vj+1αj+1,j :

w = A*V(:,j);
for i = 1:j

alpha(i,j) = V(:,i)’ * w;
w = w - V(:,i) * alpha(i,j);

end
alpha(j+1,j) = norm(w);
V(:,j+1) = w / alpha(j+1,j);

Starting with v1 = b
‖b‖ , that is all we need to implement it.



Remarks on Arnoldi
This computed nested bases for the Krylov subspaces:

Kj(A, b) = Im
[
v1 v2 . . . vj

]
.

Why did we start with w = Avj and not another vector? Because
we can prove (inductively) that vj = p(A)b for a polynomial of
degree exactly j − 1.

So Avj = p̃(A)b for a polynomial p̃(z) = zp(z) of degree exactly j ,
and the same holds for Avj −

∑j
i=0 viαi ,j = vj+1αj+1,j .

(If we had started instead with a vector w of ‘degree’ < j , we
would have obtained Avj −

∑j
i=0 viαi ,j = 0.)



Lucky breakdown in Arnoldi
It could still happen that αj+1,j = 0 and we get ‘breakdown’
(division by 0) though! But it happens only when (at some step)

Ajb = p(A)b

for some polynomial p(z) of degree < j , i.e., d(A)b = 0 for
d(z) = z j − p(z) of degree j .

When this holds, Kj(A, b) = span(b,Ab, . . . ,Aj−1b) = is an
invariant subspace of A.

This could happen as early as in step j = 1, if b is an eigenvector
of A.

When this breakdown happens, we are lucky, because we know a
‘recipe’ to compute n(A)b for polynomials n(z) of any degree:
from the polynomial division n(z) = d(z)q(z) + r(z), we get
n(A)b = r(A)b.



Arnoldi: the ‘recipe’
Gathering all the relations involving the Avj in a matrix, we get

A
[
v1 . . . vn

]
︸ ︷︷ ︸

Vn

=
[
v1 . . . vn+1

]
︸ ︷︷ ︸

Vn+1



α1,1 α1,2 α1,3 . . . α1,n
α1,2 α2,2 α2,3 . . . α2,n
0 α3,2 α3,3 . . . α3,n

0 0 . . . . . . ...
...

... . . . . . . αn,n
0 . . . . . . 0 αn+1,n


︸ ︷︷ ︸

Hn

.

When αn+1,n = 0 (breakdown), AVn = VnHn, where Hn is Hn
without the last row. This is an invariant subspace relation.

Note that Hn = V ∗n AVn.



Formula for p(A)b

Lemma
For all polynomials with deg p < n

p(A)b = Vnp(Hn)V ∗n b = Vnp(Hn)e1‖b‖

Proof: it is sufficient to show that Ajb = VnH j
nV ∗n b for j < n.

VnH j
nV ∗n = VnV ∗n AVnV ∗n A · · ·VnV ∗n AVnV ∗n AVnV ∗n b

Let us start from the right. VnV ∗n is an orthogonal projection
matrix onto the Krylov space. Since b ∈ Kn(A, b), VnV ∗n b = b.
Now the rightmost part reads VnV ∗n Ab; but this equals Ab because
Ab ∈ Kn(A, b), and so on.



Arnoldi, matrix functions, and polynomial approximations
Idea: let’s compute f (A)b ≈ Vnf (Hn)e1‖b‖. This approximation is
exact when f is a polynomial of degree < n.

Moreover,

Vnf (Hn)e1‖b‖ = Vnp̃(Hn)e1‖b‖ = p̃(A)b,

where p̃ is the interpolating polynomial to f on the spectrum of Hn
(not that of A!)

Known behaviour from Arnoldi theory: for many matrices, the
eigenvalues of Hn (Ritz values) approximate the extremal
eigenvalues of A.



Arnoldi variants [Güttel ’13]

We expect good results if (1) enough steps are taken, and (2) the
function f takes its larger values in the extremal eigenvalues of A.
What if f takes its larger values at some internal point of the
spectrum of A, e.g., f (x) = 1

x and A has both positive and
negative eigenvalues (or complex values not all in the same
half-plane)?
Idea: change the Arnoldi iteration!
I Extended Arnoldi: constructs an orthonormal basis for
{p(A)b : p = α−n1x−n1 + α−n1+1x−n1+1 + · · ·+ αn2−1xn2−1}
= A−n1Kn1+n2(A, b) = Kn1+n2(A,A−n1b);
(Laurent polynomials)

I Rational Arnoldi: given qn−1(z) of degree n− 1, o.n. basis for
{r(A)b : r(z) = p(z)/qn−1(z), p any polynomial of degree < n}
= qn−1(A)−1Kn(A, b) = Kn(A, qn−1(A)−1b);
(rational functions with denominator qn−1(z))

can be constructed, e.g., extended Krylov, i.e., Krylov on A and
A−1 ‘at the same time’, or rational Krylov, which takes poles
µ1, µ2, . . . , µk ∈ C as input and constructs a basis of

{
k∑

j=1
αj(A− µj)−1b : α1, α2, . . . , αk ∈ C},

i.e., all vectors of the form r(A)b, where r(x) is a rational function
with poles µ1, . . . , µk .



Extended Arnoldi
Idea: as in Arnoldi, start with a continuation vector v ∈ Im Vj .
Compute
I w = A−1v if you want to add a negative power of z to your

space `(A)b
I w = Av if you want to add a positive power of z to your

space of Laurent polynomials of the form `(A)b,
Only detail: the continuation vector must be a vector v = `(A)b
with a non-zero first or last coefficient (respectively).

A working choice: take the vk from the last time k that you
extended your space with a power of the same kind.

Putting together all orthogonalization relations yields a relation of
the form

AVn+1Kn = Vn+1Hn

This provides a ‘recipe’ to compute products Ax for every
x ∈ Im Vn.



Rational Arnoldi
Similar idea. At each step j , we have a denominator polynomial
qj−1(z) = (z − ξ1)(z − ξ2) . . . (z − ξj−1) of degree j − 1, and an
orthonormal basis for

qj−1(A)−1Kj(A, b) =
{

r(A)b : r(z) = p(z)
qj−1(z) , deg(p) < j

}
.

We extend the space by adding a new pole ξj (possibly repeated).

We start from a suitable continuation vector v (typically one of the
vi), compute w = (A− ξj I)−1v , and orthogonalize it against all
previous basis vectors vi .

With small changes to the continuation formula
(w = (I − A/ξj)−1Av), one can allow for poles ξj equal to ∞ (i.e.,
“traditional” Arnoldi).



Arnoldi approximation
Once one has computed a suitable approximation space Vn,

f (A)b ≈ Vnf (An)V ∗n b, An = V ∗n AVn.

Usually one takes the last pole ξn to be ∞ (a traditional Arnoldi
step), so the last row of Kn is 0 and An = HnK−1

n .

Theorem [Güttel ’13, Theorem 3.3]

Suppose that qn−1(An) is invertible, where
qn−1(z) = (z − ξ1) . . . (z − ξn−1). Then,

Vnf (An)V ∗n b = r̃(A)b,

where r̃(z) = p(z)/qn−1(z) is a rational function that interpolates
f in the spectrum of An.



Proof: similar to the previous lemma, but replacing b with
qn−1(A)−1b.



Costs and benefits
Computational cost:
I Extended Arnoldi: typically computed with a (sparse) LU

factorization of A, once, so that we can reuse it for each
product with A−1.

I Rational Arnoldi: typically computed with one sparse direct
solver at each step. More degrees of freedom due to choice of
poles. (Adaptively? From interpolation theory?)

Both are more expensive than Arnoldi.

Key issues: how much better is rational interpolation (for your f
and A) than polynomial interpolation, so that the trade-off is
convenient? How to choose good poles ξj?

Lots of current research on it. No details here. (I am not an expert
myself!)
More detail in the review paper [Güttel ’13].



Matlab examples
Using Rktoolbox by Güttel http://guettel.com/rktoolbox/.
1. Take A = randn(100) + 10*eye(100)

2. Take poles [−1,−2, . . . ,−10]: approximates well the leftmost
part of the spectrum, but what matters for the exponential is
the rightmost part.

3. Take poles [31, 32, . . . , 40]: much better.
4. Try classical Arnoldi (poles [∞× 10]), and extended Arnoldi

(poles [∞× 5, 0× 5]).

http://guettel.com/rktoolbox/

