
Example: control theory [Datta, Ch. 5]

Control theory (important subject in engineering) is the study of
dynamical systems + controllers.

Example can we keep an ‘inverted pendulum’ of length ` in the
unstable upright position (12 o’ clock) by applying a steering force?

State x(t) =
[
θ

θ̇

]
, where θ is the angle formed by the pendulum

(12 o’ clock ↔ θ = 0).

Free system equations:

ẋ =
[
θ̇

θ̈

]
=

[
x2

g` sin x1

]
≈

[
x2

g`x1

]
=

[
0 1
g` 0

]
x .

The system is not stable: A =
[
0 1
g` 0

]
has one positive and one

negative eigenvalue.



Example: controlling an inverted pendulum
Now we apply an additional steering force u (control):

ẋ = Ax + Bu, B =
[
0
1

]
.

Can we choose u(t) so that the system is stable? Yes — even
better: we can choose one of the form u(t) = Fx(t), F ∈ R1×2

We can literally build a contraption (engine + camera) that sets
the appropriate force according to the current state only (feedback
control). u =

[
f1 f2

]
x gives the closed-loop system

ẋ = (A + BF )x =
[

0 1
f1 + g` f2

]
x .

Choosing f1, f2, we can move the eigenvalues of A + BF arbitrarily.

Remark: f2 = 0 (observing only position θ) isn’t enough!



Other examples
Heat equation: in a bar of uniform material (the segment [0, 1]),
one endpoint 1 is kept at constant temperature 0◦C, and we apply
a variable temperature (amount of ‘heat’) u(t) at the other
endpoint 0.
The temperature x(y , t) at position y and time t follows

∂

∂t x(y , t) = α
∂2

∂y2 x(y , t), x(0, t) = u(t), x(1, t) = 0.

We discretize in space: x(t) is a vector of temperatures at
equi-spaced points h, 2h, . . . , nh = 1.

d
dt x(t) = Ax(t) + Bu(t),

A = α
h2 tridiag(−1, 2,−1), B = − α

h2 e1.

Other examples in [Datta, Ch. 5], e.g. electrical circuits.

Video: triple pendulum on a cart, e.g., youtu.be/cyN-CRNrb3E.

youtu.be/cyN-CRNrb3E


The general setup

ẋ = Ax + Bu, A ∈ Rn×n, B ∈ Rn×m.

Can we always stabilize a system? No — counterexample:

A =
[
A11 A12
0 A22

]
, B =

[
B1
0

]
.

No matter what we choose, we cannot change the dynamics of the
second block of variables. If A22 has eigenvalues outside the LHP,
there is nothing we can do.



Controllability
This structure may be ‘hidden’ behind a change of basis, for
instance A← MAM−1,B ← MB.

How do we check for it? Krylov spaces:

The pair (A,B) is called controllable if

span(B,AB, . . . ,AkB, . . . ) = Rn.



Controllability [Datta, Ch. 6, with more streamlined proofs]

Definition
(A,B) ∈ Rn×n × Rn×m is controllable iff K (A,B) = Rn, where

K (A,B) := span(B,AB,A2B, . . . ).

It is enough to stop at An−1B, because An is a linear combination
of I,A, . . . ,An−1 (Cayley–Hamilton theorem).

Lemma
There exists a nonsingular M ∈ Rn×n such that

M−1AM =
[
A11 A12
0 A22

]
, M−1B =

[
B1
0

]

(with A11 ∈ Rn1×n1 , A22 ∈ Rn2×n2 , B1 ∈ Rn1×m, and n2 6= 0) if
and only if (A,B) is not controllable.



Proof
⇒ Partition M =

[
M1 M2

]
conformably. Then,

AkB = M
[
Ak

11B1
0

]
= M1Ak

11B1, so K (A,B) ⊆ Im M1.

⇐ Let the columns of M1 be a basis of K (A,B), and complete it
to a nonsingular M =

[
M1 M2

]
. Then, M−1AM is block

triangular (because M1 is A-invariant), and M−1B has zeros in the
second block row (because the columns of B lie in Im M1).

(Linear algebra characterization: K (A,B) is the smallest
A-invariant subspace that contains B. It’s the space Vn that we
obtain after we encounter breakdown in Arnoldi.)



Kalman decomposition

Kalman decomposition
For every matrix pair (A,B) ∈ Rn×n × Rn×m, there is a change of
basis M such that

M−1AM =
[
A11 A12
0 A22

]
, M−1B =

[
B1
0

]
,

with (A11,B1) controllable.

Proof: as above: take M1 such that its columns are a basis of the
‘controllable space’ K (A,B), then complete it to a basis of Rn.



Other controllability criteria

Popov (or Hautus) criterion
(A,B) controllable ⇐⇒ rank[A− zI,B] = n for all z ∈ Λ(A)
⇐⇒ rank[A− zI,B] = n for all z ∈ C.

It is enough to test the condition on z ∈ Λ(A), because for all
other z we already have rank(A− zI) = n.

Proof
⇐ If (A,B) is not controllable, write it in a Kalman decomposition,
then for z ∈ Λ(A22) the bottom part does not have full rank.

⇒ If v∗[A− λI,B] = 0 for some λ ∈ Λ(A), then up to a change of
basis we can assume v = en, and this implies (A,B) are in a
Kalman decomposition (with n2 = 1).



Controllability Gramian

(A,B) controllable iff

W =
∫ t

0
exp(τA)BB∗ exp(τA)∗dτ � 0

for t > 0 (one or all, equivalently).

Proof
⇐ suppose (A,B) is not controllable. Then, for any t
Im X ⊆ K (A,B), because Im exp(τA)Bx ∈ K (A,B).
⇒ suppose instead that for some v 6= 0

0 = v∗Wv =
∫ t

0
v∗eAtBB∗eA∗tvdt =⇒ Φ(t) = v∗eAtB ≡ 0.

Evaluate 0 = Φ(0) = Φ′(0) = Φ′′(0) = . . . , we get
0 = v∗B = v∗AB = v∗A2B = . . .

Corollary If Λ(A) ⊆ RHP, then Lyapunov sol. � 0 iff (A,Q)
controllable.



Controllable means controllable
Theorem
(A,B) controllable iff for any “target” (tF , xF ) (typycally, xF = 0)
we can choose a control u such that the system

ẋ(t) = Ax(t) + Bu(t), x(0) = x0

has x(tF ) = xF .

Proof
⇒ If (A,B) is not controllable, then x(t) ∈ K (A,B) for all t.
⇐ Recall that (solution of linear differential eqns)

x(t) = exp(At)x0 +
∫ t

0
exp(A(t − τ))Bu(τ)dτ.

Just take u(t) = B∗ exp(A(t − τ))∗y (for a fixed vector y) to get

x(tF ) = exp(AtF )x0 + Wy ,

which can ‘reach’ arbitrary vectors.



Stabilizability
Weaker condition: sometimes even if a system is not controllable
we can still ensure it is stable via a feedback control.
Definition
(A,B) is stabilizable if in its Kalman decomposition A22 is stable
(i.e., Λ(A22) ⊆ LHP).

Note that this definition is well-posed even if M is non-unique: the
eigenvalues of A11 are the eigenvalues of A|K(A,B), and those of
A22 are the remaining eigenvalues of A (counting with their
algebraic multiplicity).

Hautus test: (A,B) stabilizable ⇐⇒ rank(A− zI,B) = n for all
z 6∈ LHP.



How to test controllability numerically?
Numerically, “almost any” pair is controllable (zeros are typically
not zeros in machine arithmetic).
I Run a (block) Krylova algorithm, and check if it breaks down

early.
I Compute Λ(A) and check that rank[A− zI,B] = n for each

z ∈ Λ(A).
I If Λ(A) ⊂ LHPs, then you can also solve the Lyapunov

equation AW + WA∗ + BB∗ = 0 (with Bartels–Stewart, or
even the O(n6) Kronecker product algorithm if you don’t care
too much about efficiency).

What if Λ(A) 6∈ LHP? You can use the following result:

K (A− αI,B) = K (A,B), hence (A− αI,B) is controllable iff
(A,B) is.

Proof For all j ∈ N, (A− αI)jB is a linear combination of
B,AB,A2B . . . hence K (A− αI,B) ⊆ K (A,B). And vice versa.



How to test controllability numerically?
Remark The criterion with the Lyapunov equation actually
corresponds to a ‘physical’ quantity: x∗0 W−1x0 is the minimal
amount of ‘energy’

∫ tF
0 u(τ)∗u(τ)dτ that we need to reach

x(tF ) = 0 starting from x(0) = x0. (We won’t prove it here.)

So the closer (A,B) is to non-controllability, the more energy you
need to ‘control’ certain initial states.

(Matlab examples: construct a non-controllable (A,B) from a
Kalman decomposition, and apply the various methods.)

Similarly, there are an infinite number of choices for F that yield a
stable Λ(A + BF ) ⊂ LHP (by continuity, for instance.)
I How to find one?
I How to find the best one (and what does it even mean)?



How to find a stabilizing control: Bass algorithm

Given a controllable (A,B), how can we compute F so that
Λ(A + BF ) ⊂ LHP?

Let α > ρ(A); then Λ(−A− αI) ⊆ LHP, and the Lyapunov eq.

−(A + αI)W −W (A + αI)∗ + 2BB∗ = 0

has a solution W � 0. It is actually W � 0, because (−A− αI,B)
is controllable iff (A,B) is.
Some algebra gives another Lyapunov equation

(A− BB∗W−1)W + W (A− BB∗W−1)∗ + 2αW = 0.

Earlier result: W � 0, 2αW � 0 =⇒ Λ(A− B(B∗W−1)) ⊂ LHP.

Remark If (A,B) is controllable, we can find F such that A + BF
has any chosen spectrum. (We won’t prove it here.) [Datta, Ch. 11]


