
Optimal control
Several choices available for stabilizing feedback F : for instance,
you can choose different α’s in Bass algorithm.

Is there an ‘optimal’ one?

Linear-quadratic optimal control
Find u : [0,∞]→ R (piecewise C0, let’s say) that minimizes

E =
∫ ∞

0
x∗Qx + u∗Ru dt

s.t. ẋ = Ax + Bu, x(0) = x0.

Minimum ‘energy’ defined by a quadratic form (R � 0, Q � 0).

We assume R � 0: control is never free. Trickier problem
otherwise.



Optimal control — solution
Using calculus of variations tools, one can prove this result.

Pontryagin’s maximum principle
A pair of functions u, x solves the optimal control problem iff there
exists a function µ(t) (‘Lagrange multiplier’) such that 0 I 0
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u

 ,
x(0) = x0, limt→∞

[ µ
x
u

]
= 0.

We would know how to solve this if the matrix in the LHS were
invertible. Unfortunately it is not!

There are techniques to solve this problem directly working on the
two matrices, but they involve some matrix pencil theory that we
did not treat in this course.



Change of variables
How to get rid of the last equation? Back-substitution. µ, x , u
solve  0 I 0
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AT Q 0
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µx

u


iff u = −R−1BTµ and µ, x solve[

I
−I

] [
µ̇
ẋ

]
=
[
−BR−1BT A

AT Q

] [
µ
x

]

The problem[
ẋ
µ̇

]
= H

[
x
µ

]
, H =

[
A −G
−Q −AT

]
, G = BR−1BT .

with
x(0) = x0, lim

t→∞

[
x(t)
µ(t)

]
= 0.



Solving linear differential equations
The general solution of v̇ = Hv is

v(t) = exp(tH)v0.

Plugging in a Jordan decomposition of H,

v(t) = V

exp(tJ1)
. . .

exp(tJs)

 (V−1v0).

Which of these are stable (limt→∞ v(t) = 0)? Entries of V−1v0
that match Jordan blocks with λ 6∈ LHP must be 0.

I.e., we must have v0 ∈ U , where U is the stable invariant subspace
of H

U = span{vi : vi belongs to a Jordan chain of H with λ ∈ LHP}.



Solving the reduced problem
Suppose that:
I H has n eigenvalues in the LHP and n in the RHP.

I we find X such that
[

I
X

]
spans the stable invariant subspace

of H, i.e., H
[

I
X

]
=
[

I
X

]
R, Λ(R) ⊂ LHP.

Then, the stable solutions of[
ẋ
µ̇

]
= H

[
x
µ

]

are given by [
x(t)
µ(t)

]
=
[

I
X

]
exp(Rt)v .

The initial condition x(0) = x0 gives v = x0. Moreover,
µ(t) = Xx(t), hence u(t) = −R−1BT Xx(t).



Algebraic Riccati equations

We have reduced the problem to H
[

I
X

]
=
[

I
X

]
R, or

[
A −G
−Q −AT

] [
I
X

]
=
[

I
X

]
R

R = A− GX , −Q − AT X = XA− XGX .

AT X + XA + Q − XGX = 0, Q � 0, G � 0

is called algebraic Riccati equation. We look for a stabilizing
solution, i.e., Λ(R) ⊆ LHP.

This formulation as a matrix equation is alternative to the
invariant subspace one. It was preferred (and still is, to some
extent) by the engineers.



Linear-quadratic regulator theorem [Datta, Thm 10.5.1]

A direct proof of the optimality result using the Riccati
formulation.
Theorem
Let Q � 0, R � 0, G = BR−1BT � 0. Suppose that there exists
X with
I AT X + XA + Q − XGX = 0, (X solves ARE),
I A− GX � 0,
I X � 0.

Then, the solution of the minimum problem

min
∫ ∞

0
x(t)T Qx(t) + u(t)T Ru(t) dt,

s.t. ẋ(t) = Ax(t) + Bu(t), lim x(t)→ 0

is xT
0 Xx0, attained when u(t) = −R−1BT Xx(t) for all t.



Proof
Proof

d
dt xT Xx = ẋT Xx + xT Xẋ

= (Ax + Bu)T Xx + xT X (Ax + Bu)
= xT (AT X + XA)x + uT BT Xx + xT XBu
= xT (XBR−1BT X − Q)x + uT BT Xx + xT XBu
= (u + R−1BT Xx)T R(u + R−1BT Xx)︸ ︷︷ ︸

�0

−xT Qx − uT Ru.

Integrating from 0 to ∞,∫ ∞
0

xT Qx + uT Ru dt ≥ xT
0 Xx0 − x(∞)T Xx(∞)︸ ︷︷ ︸

=0

,

with equality if u + R−1BT Xx ≡ 0.



Solvability conditions
Solutions of (ARE) ⇐⇒ n-dimensional invariant subspaces of H
with invertible top block.

If H has distinct eigenvalues, there are at most
(2n

n
)
solutions

(choose n eigenvalues out of the 2n. . . )

Solvability conditions
Does the ARE have a (unique) stabilizing solution? For this, H
Must have (exactly) n eigenvalues in the LHP, and the associated

invariant subspace must be expressible as Im
[

I
X

]
.

Next goal: show that these assumptions hold.



Hamiltonian matrices

H =
[

A −G
−Q −A∗

]
, Q = Q∗, G = G∗

is a Hamiltonian matrix, i.e., it satisfies JH = −H∗J , where

J =
[

I
−I

]
.

(Skew-self-adjoint with respect to the antisymmetric scalar product
defined by J .)

Spectral symmetry
If Hv = λv , then (v∗J)H = (−λ)(v∗J): eigenvalues are
symmetric wrt the imaginary axis.

A similar relation can be proved for Jordan chains: λ and −λ have
Jordan chains of the same size.

Thus, it is sufficient to prove that H has no pure imaginary
eigenvalues to conclude that they split n : n in LHP:RHP.



Solvability conditions

Theorem
Assume Q � 0, G = BR−1B∗ � 0, and (A,B) stabilizable. Then,
H has no eigenvalues with Reλ = 0.

Proof (sketch)
Suppose instead H[ z1z2 ] = ıω[ z1z2 ]; from
0 = Re[ z∗

2 z∗
1 ]
[

A −G
−Q −A∗

]
[ z1z2 ] = z∗2 Gz2 + z∗1 Qz1 follows that

Qz1 = 0, z∗2 B = 0. But the latter together with −A∗z2 = −ıωz2
contradicts stabilizability.

Hence, H has n eigenvalues in the LHP and n associated ones in
the RHP: it has exactly one stabilizing subspace (of dimension n).



Form of the invariant subspace
We know now that there exists a (unique) stable invariant subspace

Im
[
U1
U2

]
, U1,U2 ∈ Rn×n.

We would like to show that U1 is invertible. Then we can write a
different basis for the same space

Im
[
U1
U2

]
= Im

[
U1
U2

]
U−1

1 = Im
[

I
X

]
.

Suppose (A,B) stabilizable, Q � 0, G � 0. Then U1 is invertible.

Proof: sketch in the next slide.



Nonsingularity of U1

For any v such that U1v = 0,

−v∗U∗2 GU2v =
[
v∗U∗2 0

]
H
[

0
U2v

]
= v∗

[
U∗2 −U∗1

] [U1
U2

]
Rv = 0.

implies B∗U2v = 0 and GU2v = 0. The first block row of[
A −G
−Q −A∗

] [
U1
U2

]
v =

[
U1
U2

]
Rv

gives U1Rv = 0 =⇒ ker U1 is R-invariant. If ker U1 is nontrivial,
we can find v , λ ∈ LHP such that U1v = 0, Rv = λv . Now the
second block row gives −A∗U2v = λU2v . This (together with
B∗U2v = 0 from above) contradicts stabilizability.



Symmetry of the solution

By Hamiltonian properties, if
[
U1
U2

]
spans the stable invariant

subspace,
[
U∗1 U∗2

]
J =

[
U∗2 −U∗1

]
spans the left anti-stable

invariant subspace.

Left and right invariant subspaces relative to disjoint eigenvectors
are orthogonal =⇒

0 =
[
U∗2 −U∗1

] [U1
U2

]
= U∗2 U1 − U∗1 U2.

Hence also

U−∗1 U∗2 − U2U−1
1 = 0 =⇒ X ∗ − X = 0.



Positive semidefiniteness of the solution
Note that

ARE ⇐⇒ (A− GX )T X + X (A− GX ) + Q + XGX = 0.

So X solves the Lyapunov equations

ÂT X + XÂ + Q̂ = 0, Â = A− GX , Q̂ = Q + XGX .

And we know that Λ(Â) ⊂ LHP, Q̂ � 0 =⇒ X � 0.



How to solve Riccati equations
I Newton’s method.
I Invariant subspace via unstructured methods (QR).
I Invariant subspace via ‘semi-structured’ methods (Laub trick).
I Invariant subspace via structured methods (URV).
I Doubling / Sign iteration.


