Large-scale methods for Lyapunov equations

We give a hint of the methods used for large-scale equations.

We focus on Lyapunov equations, $AX + XA^* + BB^* = 0$. (Then we can solve CAREs using Newton's method.)

Assumptions: A large and sparse with $\Lambda(A) \subset LHP$. $B \in \mathbb{R}^{n \times m}$, with $m \ll n$.

Actually, we may suppose $B = b \in \mathbb{R}^n$ without loss of generality: a rank-m matrix is the sum of m rank-1 matrices, and the equation is linear.

Assume A symmetric, normal or 'almost normal'. The algorithms often work for generic A, but the analysis works better for normal matrices.

Roadblock: the solution X is dense! Solution: often, $X \approx ZZ^*$ with a tall thin Z: it has decaying singular values and low numerical rank.

ADI (alternating-direction implicit iteration)

Let
$$
\tau > 0
$$
, so that $\Lambda(A - \tau I) \subset LHP$. One can rewrite $AX + XA^* + bb^* = 0$ as

$$
(A - \tau I)X(A - \tau I)^* - (A + \tau I)X(A + \tau I)^* - 2\tau b b^* = 0
$$

or (with $c(x) = \frac{x+\tau}{x-\tau}$)

$$
X - c(A)Xc(A)^* = 2\tau(A - \tau I)^{-1}bb^*(A - \tau I)^{-*}.
$$

This suggests the fixed-point iteration

$$
X_0 = 0, \quad X_k = c(A)X_{k-1}c(A)^* + 2\tau(A-\tau I)^{-1}bb^*(A-\tau I)^{-*}.
$$

In addition, we can change the value of *τ* at each iteration: $c_k(x) = \frac{x+\tau_k}{x-\tau_k}$

$$
X_k = c_k(A)X_{k-1}c_k(A)^* + 2\tau_k(A - \tau_k I)^{-1}bb^*(A - \tau_k I)^{-*}.
$$

Low-rank ADI

$$
X_0 = 0, \quad X_k = c_k(A)X_{k-1}c_k(A)^* + 2\tau_k(A - \tau_k I)^{-1}bb^*(A - \tau_k I)^{-*}.
$$

can be rewritten in terms of the 'low-rank factor' of $X_k = Z_k Z_k^*$:

$$
Z_0=0, \quad Z_k=\begin{bmatrix}c_k(A)Z_{k-1} & \sqrt{2\tau_k}(A-\tau_kI)^{-1}b\end{bmatrix}.
$$

The cumulative effect of k steps is (with $d_k(x) = \sqrt{2\tau_k}(x-\tau_k)^{-1})$

$$
Z_k = \begin{bmatrix} c_k c_{k-1} \ldots c_2 d_1(A) b & \cdots & c_k d_{k-1}(A) b & d_k(A) b \end{bmatrix}.
$$

Low-rank ADI

$$
Z_k = \begin{bmatrix} c_k c_{k-1} \ldots c_2 d_1(A) b & \cdots & c_k d_{k-1}(A) b & d_k(A) b \end{bmatrix},
$$

We can compute the same quantity "starting from the right":

$$
Z_k = \begin{bmatrix} d_1c_2 \dots c_{k-1}c_k(A)b & \cdots & d_{k-1}c_k(A)b & d_k(A)b \end{bmatrix}
$$

=
$$
\begin{bmatrix} v_1 & v_2 & \cdots & v_k \end{bmatrix}.
$$

Since $c_j(x)=1+\sqrt{2\tau_j}d_j(x)$, we can compute this iteratively (details omitted).

Low-rank ADI

$$
v_1 = \sqrt{2\tau_1}(A - \tau_1)^{-1}b, \quad v_j = \frac{\sqrt{2\tau_j}}{\sqrt{2\tau_{j-1}}}(v_j + (\tau_{j-1} + \tau_j)(A - \tau_j I)^{-1}v_j).
$$

ADI: convergence

ADI residual:

$$
X_k - X_* = c_k(A)(X_{k-1} - X_*)c_k(A)^* = \cdots = g(A)(X_0 - X_*)g(A)^*,
$$

where $g(x) = \prod_{i=j}^k \frac{x - \tau_i}{x + \tau_i}$.

Convergence speed depends on the choices of *τ*^j . Intuitively: good if $A + \tau_j I$ is small and $A - \tau_j I$ is large. This suggests taking τ_j as (some of) the eigenvalues of A.

If $A = V \Lambda V^{-1}$, then

$$
\|g(A)\| \leq \kappa(V) \max_{\lambda \in \Lambda(A)} \prod_{j=0}^k \frac{|\lambda - \tau_j|}{|\lambda + \tau_j|}.
$$

How to choose τ_j 's that make this small? Easy if A has few $/$ clustered eigenvalues.

ADI convergence

$$
\eta_k = \min_{\tau_0,\dots,\tau_k} \max_{\lambda \in \Lambda(A)} \prod_{j=0}^{k-1} \frac{|\lambda - \tau_j|}{|\lambda + \tau_j|}.
$$

In general, tricky approximation theory problem. Typical approach: find an enclosing region for the eigenvalues of A (for instance, if $\mathcal{A} = \mathcal{A}^*$, all eigenvalues are in $[\lambda_{\sf min}, \lambda_{\sf max}])$.

Then, we look for a polynomial that is 'small' on $[\lambda_{\min}, \lambda_{\max}]$ and 'large' on $[-\lambda_{\text{max}}, -\lambda_{\text{min}}]$.

In many cases, $\eta_k \sim r^k$ for a certain $r < 1$.

In particular, the solution X_* is "well-approximated" by the matrix X_k of rank k.

Consequence The singular values of X decay as $\sim r^k$, low numerical rank.

(Good thing, because otherwise the problem would be hopeless.)

Residual computation

For $X_k = Z_k Z_k^*$, with $Z_k \in \mathbb{R}^{n \times k}$, we have

$$
AZ_kZ_k^* + Z_kZ_k^*A^* + BB^* = \begin{bmatrix} Z_k & AZ_k & B \end{bmatrix} \begin{bmatrix} 0 & I & 0 \\ I & 0 & 0 \\ 0 & 0 & I \end{bmatrix} \begin{bmatrix} Z_k & AZ_k & B \end{bmatrix}^*
$$

.

Using QR or SVD of the tall thin $\begin{bmatrix} Z_k & AZ_k & B \end{bmatrix}$, we can compute residual norms in $O(nk^2)$.

Rational Arnoldi

The computed Z_k has columns of the form $r(A)b$, where $r(x) = \frac{q(x)}{p(x)}$, denominator $p(x) = (x - \tau_1)(x - \tau_2) \dots (x - \tau_k).$

Hence, our approximation Z_k lives in a rational Arnoldi subspace

$$
K_q(A,b) = \{p(A)^{-1}q(A)b: \deg q < k\} = p(A)^{-1}K_k(A,b).
$$

Idea: first compute this subspace, then solve the projected equation.

Galerkin Projection

Given an orthonormal basis U_k of $K_q(A,b)$:

1. Set $X_k = U_k Y_k U_k^*$;

2. Assume 'orthogonal residual': $U_k^*(AX_k + X_kA^* + BB^*)U_k = 0$. Produces a projected Lyapunov equation

$$
(U_k^*AU_k)Y+Y(U_k^*AU_k)^*+U_k^*BB^*U_k=0.
$$

Difficulty 1 Even if A stable, $U_k^* A U_k$ is not necessarily so (unless A symmetric!).

Difficulty 2 (main one, shared with ADI): good pole selection.