
Large-scale methods for Lyapunov equations
We give a hint of the methods used for large-scale equations.

We focus on Lyapunov equations, AX + XA∗ + BB∗ = 0.
(Then we can solve CAREs using Newton’s method.)

Assumptions: A large and sparse with Λ(A) ⊂ LHP. B ∈ Rn×m,
with m� n.

Actually, we may suppose B = b ∈ Rn without loss of generality: a
rank-m matrix is the sum of m rank-1 matrices, and the equation
is linear.

Assume A symmetric, normal or ‘almost normal’. The algorithms
often work for generic A, but the analysis works better for normal
matrices.

Roadblock: the solution X is dense!
Solution: often, X ≈ ZZ ∗ with a tall thin Z : it has decaying
singular values and low numerical rank.



ADI (alternating-direction implicit iteration)
Let τ > 0, so that Λ(A− τ I) ⊂ LHP. One can rewrite
AX + XA∗ + bb∗ = 0 as

(A− τ I)X (A− τ I)∗ − (A + τ I)X (A + τ I)∗ − 2τbb∗ = 0

or (with c(x) = x+τ
x−τ )

X − c(A)Xc(A)∗ = 2τ(A− τ I)−1bb∗(A− τ I)−∗.

This suggests the fixed-point iteration

X0 = 0, Xk = c(A)Xk−1c(A)∗ + 2τ(A− τ I)−1bb∗(A− τ I)−∗.

In addition, we can change the value of τ at each iteration:
ck(x) = x+τk

x−τk
,

Xk = ck(A)Xk−1ck(A)∗ + 2τk(A− τk I)−1bb∗(A− τk I)−∗.



Low-rank ADI

X0 = 0, Xk = ck(A)Xk−1ck(A)∗+2τk(A− τk I)−1bb∗(A− τk I)−∗.

can be rewritten in terms of the ‘low-rank factor’ of Xk = ZkZ ∗k :

Z0 = 0, Zk =
[
ck(A)Zk−1

√
2τk(A− τk I)−1b

]
.

The cumulative effect of k steps is (with dk(x) =
√
2τk(x − τk)−1)

Zk =
[
ckck−1 . . . c2d1(A)b · · · ckdk−1(A)b dk(A)b

]
.



Low-rank ADI

Zk =
[
ckck−1 . . . c2d1(A)b · · · ckdk−1(A)b dk(A)b

]
,

We can compute the same quantity “starting from the right”:

Zk =
[
d1c2 . . . ck−1ck(A)b · · · dk−1ck(A)b dk(A)b

]
=

[
v1 v2 · · · vk

]
.

Since cj(x) = 1 +
√
2τjdj(x), we can compute this iteratively

(details omitted).

Low-rank ADI

v1 =
√
2τ1(A−τ1)−1b, vj =

√
2τj√
2τj−1

(vj +(τj−1+τj)(A−τj I)−1vj).



ADI: convergence
ADI residual:

Xk − X∗ = ck(A)(Xk−1 − X∗)ck(A)∗ = · · · = g(A)(X0 − X∗)g(A)∗,

where g(x) =
∏k

i=j
x−τj
x+τj

.

Convergence speed depends on the choices of τj . Intuitively: good
if A + τj I is small and A− τj I is large. This suggests taking τj as
(some of) the eigenvalues of A.

If A = V ΛV−1, then

‖g(A)‖ ≤ κ(V ) max
λ∈Λ(A)

k∏
j=0

|λ− τj |
|λ+ τj |

.

How to choose τj ’s that make this small? Easy if A has few /
clustered eigenvalues.



ADI convergence

ηk = min
τ0,...,τk

max
λ∈Λ(A)

k−1∏
j=0

|λ− τj |
|λ+ τj |

.

In general, tricky approximation theory problem. Typical approach:
find an enclosing region for the eigenvalues of A (for instance, if
A = A∗, all eigenvalues are in [λmin, λmax]).

Then, we look for a polynomial that is ‘small’ on [λmin, λmax] and
‘large’ on [−λmax,−λmin].

In many cases, ηk ∼ rk for a certain r < 1.

In particular, the solution X∗ is “well-approximated” by the matrix
Xk of rank k.
Consequence The singular values of X decay as ∼ rk , low
numerical rank.

(Good thing, because otherwise the problem would be hopeless.)



Residual computation
For Xk = ZkZ ∗k , with Zk ∈ Rn×k , we have

AZkZ ∗k +ZkZ ∗k A∗+BB∗ =
[
Zk AZk B

] 0 I 0
I 0 0
0 0 I

 [
Zk AZk B

]∗
.

Using QR or SVD of the tall thin
[
Zk AZk B

]
, we can compute

residual norms in O(nk2).



Rational Arnoldi
The computed Zk has columns of the form r(A)b, where
r(x) = q(x)/p(x), denominator
p(x) = (x − τ1)(x − τ2) . . . (x − τk).

Hence, our approximation Zk lives in a rational Arnoldi subspace

Kq(A, b) = {p(A)−1q(A)b : deg q < k} = p(A)−1Kk(A, b).

Idea: first compute this subspace, then solve the projected
equation.



Galerkin Projection
Given an orthonormal basis Uk of Kq(A, b):
1. Set Xk = UkYkU∗k ;
2. Assume ‘orthogonal residual’: U∗k (AXk + XkA∗+ BB∗)Uk = 0.

Produces a projected Lyapunov equation

(U∗k AUk)Y + Y (U∗k AUk)∗ + U∗k BB∗Uk = 0.

Difficulty 1 Even if A stable, U∗k AUk is not necessarily so (unless A
symmetric!).
Difficulty 2 (main one, shared with ADI): good pole selection.


