Invariant subspace methods for CAREs

X solves CARE $A^{*} X+X A+Q=X G X$ iff

$$
\left[\begin{array}{cc}
A & -G \\
-Q & -A^{T}
\end{array}\right]\left[\begin{array}{c}
I \\
X
\end{array}\right]=\left[\begin{array}{c}
I \\
X
\end{array}\right] \mathcal{R}, \quad \mathcal{R}=A-G X
$$

One can find X through an invariant subspace of the Hamiltonian.
>> [A,G,Q] = carex(4) \%if test suite is installed
>> n = length(A);
>> H = [A -G; -Q -A'];
>> [U, T] = schur(H);
>> [U, T] =ordschur (U, T, 'lhp');
$\gg X=U(n+1: 2 * n, 1: n) / U(1: n, 1: n) ;$

Recall: backward stability

QR-like algorithms based on successive orthogonal transformations are backward stable: the local error ΔM_{i} at each step (from machine arithmetic + truncation of 'numerical zeros') is mapped back to a "global error" $Q_{1}^{T} Q_{2}^{T} \ldots Q_{i}^{T}\left(\Delta M_{i}\right) Q_{i} \ldots Q_{2} Q_{1}$ of the same norm.

In particular, the Schur method computes a true invariant subspace of $\mathcal{H}+\Delta \mathcal{H}$, with $\|\Delta \mathcal{H}\|$ small.

However, this method is not structured backward stable: the error $\Delta \mathcal{H}$ is not Hamiltonian.

Among the consequences, eigenvalues close to the imaginary axis can be 'mixed up'. Try carex (14) for instance: the Schur method produces an invariant subspace \mathcal{U} that does not give a symmetric X, because it is the wrong invariant subspace.

Symplectic transformations

What preserves Hamiltonianity? Symplectic transformations do:

Definition

$S \in \mathbb{C}^{2 n \times 2 n}$ is symplectic, i.e., orthogonal w.r.t the scalar product $J=\left[\begin{array}{cc}0 & I \\ -I & 0\end{array}\right]$, if $S^{*} J S=J$.

Lemma

If \mathcal{H} is Hamiltonian and S is symplectic, then $S^{-1} \mathcal{H} S$ is Hamiltonian.

$$
\begin{aligned}
& \text { Proof: }\left(S^{-1} \mathcal{H} S\right)^{*} J=J\left(S^{-1} \mathcal{H} S\right) \Longleftrightarrow \\
& \left(S^{-1} \mathcal{H} S\right)^{*} S^{*} J S=S^{*} J S\left(S^{-1} \mathcal{H} S\right) \Longleftrightarrow S^{*} \mathcal{H}^{*} J S=S^{*} J \mathcal{H} S .
\end{aligned}
$$

Remark: symplectic transformations do not automatically ensure stability: $\|v\|$ small does not imply $\|S v\|$ small.

Orthosymplectic transformations

Ideal setting: construct successive changes of bases $\mathcal{H} \mapsto S^{-1} \mathcal{H S}$ where S is both orthogonal (for stability reasons) and symplectic (for structure preservation reasons).
For instance:

- If $Q \in \mathbb{R}^{n \times n}$ is any orthogonal matrix, then $\operatorname{blkdiag}(Q, Q)$ is orthogonal and symplectic.
- A Givens matrix that acts on entries k and $n+k$ (i.e., $\mathrm{G}=\operatorname{eye}(2 * \mathrm{n})$; $\mathrm{G}([\mathrm{k}, \mathrm{n}+\mathrm{k}],[\mathrm{k}, \mathrm{n}+\mathrm{k}])=[\mathrm{c} \mathrm{s} ;-\mathrm{s} \mathrm{c}] ;)$ is orthogonal and symplectic.

The "Laub trick"

There is a certain orthogonal and symplectic matrix that reduces \mathcal{H} to a special form.
Let $U=\left[\begin{array}{ll}U_{11} & U_{12} \\ U_{21} & U_{22}\end{array}\right]$ the unitary matrix produced by schur (H).
Then,

- $\left[\begin{array}{l}U_{11} \\ U_{21}\end{array}\right]$ spans the stable subspace and has orthonormal columns $\left(U_{11}^{*} U_{11}+U_{21}^{*} U_{21}=I\right)$;
- we have proved earlier that $U_{21}^{*} U_{11}-U_{11}^{*} U_{21}=0$.

These two properties imply that $V=\left[\begin{array}{cc}U_{11} & -U_{21} \\ U_{21} & U_{11}\end{array}\right]$ is orthogonal and symplectic.
Then, $V^{T} \mathcal{H} V=\left[\begin{array}{cc}R_{11} & R_{12} \\ 0 & -R_{11}^{*}\end{array}\right]$, with R_{11} upper triangular and R_{12} symmetric (Hamiltonian Schur form).

An orthogonal symplectic algorithm

It is a nice trick, but numerically it is not any more effective than the "non-structured" Schur method, because essentially computes the same invariant subspace with the same algorithm.

Problem

Can one apply a sequence of orthosymplectic transformations to \mathcal{H} to produce this Hamiltonian Schur form without going through the (normal, non-structured) Schur factorization?

This problem has been open for many years
Roadblock: some \mathcal{H} (associated to non-stabilizable AREs) do not admit a Hamiltonian Schur form \Longrightarrow algorithms to compute a HSF must become unstable for nearby matrices.

Chu-Liu-Mehrmann algorithm [Chu-Liu-Mehrmann '98]

A solution came from another, different decomposition: $\mathcal{H}=U R V^{T}$, with U, V orthosymplectic and

$$
R=\left[\begin{array}{cc}
R_{11} & R_{12} \\
0 & R_{22}
\end{array}\right]
$$

with R_{11}, R_{22}^{*} upper triangular.
It can be computed 'almost' directly in $O\left(n^{3}\right)$.
Note that R is not Hamiltonian anymore.

URV — simpler version (produces Hessenberg R_{22})

- Left-multiply by blkdiag(Q, Q) to get
- Left-multiply by a Givens on $(1, n+1)$ to get $\begin{array}{llllll}* & * & * & * & * & * \\ * & * & * & * & * & * \\ * & * & * & * & * & * \\ 0 & * & * & * & * & * \\ 0 & * & * & * & * & * \\ 0 & * & * & * & * & *\end{array}$
- Left-multiply by blkdiag(Q, Q) to get

$$
\begin{aligned}
& * * * * * * \\
& 0 * * * * *
\end{aligned}
$$

- Right-multiply by a Givens on $(2, n+2)$ to get $\begin{gathered}0 * * * * * * \\ 0 \\ 0, * * * * * \\ 0, * * * * *\end{gathered}$
- Right-multiply by blkdiag(Q, Q) to get

Using URV

Note that $\mathcal{H}=U R V+$ symplecticity implies

$$
\mathcal{H}=V\left[\begin{array}{cc}
-R_{22}^{T} & R_{12}^{T} \\
0 & -R_{11}^{T}
\end{array}\right] U^{T} .
$$

Hence

$$
\mathcal{H}^{2}=V\left[\begin{array}{cc}
-R_{11} R_{22}^{T} & * \\
0 & -R_{22} R_{11}^{T}
\end{array}\right] V^{T}
$$

can be used to compute eigenvalues (easily) and eigenvectors of \mathcal{H} (for instance: the columns of V cause breakdown at step 2 in Arnoldi).

