Sign-like methods for CAREs

Matrix sign iteration

$$
X_{k+1}=\frac{1}{2}\left(X_{k}+X_{k}^{-1}\right), \quad X_{0}=\mathcal{H}
$$

It is not difficult to see that X_{k} is Hamiltonian at each step (i.e., $J X_{k}=-X_{k}^{*} J$). Just show that

- If M is Hamiltonian, then M^{-1} is Hamiltonian, too.
- If M_{1}, M_{2} are Hamiltonian, then $M_{1}+M_{2}$ is Hamiltonian, too. (Guiding idea: Hamiltonian matrices are 'like antisymmetric ones': properties that you expect for antisymmetric matrices will often hold for Hamiltonian, too.)

Structure-preserving sign iteration

In machine arithmetic, the X_{k} won't be exactly Hamiltonian unless we modify our algorithm to ensure that they are.

Observation: \mathcal{H} is Hamiltonian iff $J \mathcal{H}$ is symmetric. Rewrite the iteration in terms of $Z_{k}:=J X_{k}$:

$$
Z_{k+1}=\frac{1}{2}\left(Z_{k}+J Z_{k}^{-1} J\right), \quad Z_{0}=J \mathcal{H}
$$

Will preserve symmetry exactly (assuming the method we use for inversion does).

We can incorporate scaling.
It is in some sense 'working on even pencils': given an even pencil $\lambda J-Z_{k}$, construct $\lambda J-Z_{k+1}$ (will see more of this idea in the following).

Towards doubling

Recall: in the sign iteration, if we set $Y_{k}=\left(I-X_{k}\right)^{-1}\left(I+X_{k}\right)$, then $Y_{k+1}=-Y_{k}^{2}$.

In an ideal world without rounding errors, we could compute $Y_{0}, Y_{1}, Y_{2}, \ldots$, and then get the stable invariant subspace as ker Y_{∞} (or, rather, the invariant subspace associated to the n smallest singular values of Y_{∞}, since in an ideal world without rounding errors it is nonsingular).

We can do something similar, if we work in a suitable format.

Standard Symplectic Form

Goal: write $Y_{0}=(I-\mathcal{H})^{-1}(I+\mathcal{H})$ as

$$
Y_{0}=\left[\begin{array}{ll}
I & G_{0} \\
0 & F_{0}
\end{array}\right]^{-1}\left[\begin{array}{ll}
E_{0} & 0 \\
H_{0} & I
\end{array}\right]
$$

Trick: find M such that

$$
M\left[\begin{array}{ll}
(I-\mathcal{H}) & (I+\mathcal{H})
\end{array}\right]=\left[\begin{array}{llll}
I & G_{0} & E_{0} & 0 \\
0 & F_{0} & H_{0} & I
\end{array}\right]
$$

Solution: M is the inverse of block columns $(1,4)$.
Structural properties:

- if \mathcal{H} is Hamiltonian, Y_{0} is symplectic.

Proof: via $(I-\mathcal{H})^{*} J(I-\mathcal{H})=(I+\mathcal{H})^{*} J(I+\mathcal{H})$.

- If Y_{0} is symplectic, $E_{0}=F_{0}^{*}, G_{0}=G_{0}^{*}, H_{0}=H_{0}^{*}$.
- Moreover, if $G \succeq 0, H \succeq 0$, then $G_{0} \succeq 0, H_{0} \preceq 0$ (tedious).

Doubling algorithm

Plan Given $Y_{k}=\left[\begin{array}{ll}I & G_{k} \\ 0 & E_{k}^{*}\end{array}\right]^{-1}\left[\begin{array}{ll}E_{k} & 0 \\ H_{k} & I\end{array}\right]$, compute
$Y_{k+1}=-Y_{k}^{2}=\left[\begin{array}{ll}l & G_{k+1} \\ 0 & E_{k+1}^{*}\end{array}\right]^{-1}\left[\begin{array}{ll}E_{k+1} & 0 \\ H_{k+1} & I\end{array}\right]$.
Similar to the 'inverse-free sign method' described earlier.
The swap: If $Y_{k}=\mathcal{M}_{k}^{-1} \mathcal{N}_{k}$, then $-Y_{k}^{2}=-\mathcal{M}_{k}^{-1} \mathcal{N}_{k} \mathcal{M}_{k}^{-1} \mathcal{N}_{k}=$ $\mathcal{M}_{k}^{-1} \widehat{\mathcal{M}}_{k}^{-1} \widehat{\mathcal{N}}_{k} \mathcal{N}_{k}=\left(\widehat{\mathcal{M}}_{k} \mathcal{M}_{k}\right)^{-1}\left(\widehat{\mathcal{N}}_{k} \mathcal{N}_{k}\right)$, where $\widehat{\mathcal{M}}_{k}, \widehat{\mathcal{N}}_{k}$ satisfy $\widehat{\mathcal{M}}_{k}^{-1} \widehat{\mathcal{N}}_{k}=-\mathcal{N}_{k} \mathcal{M}_{k}^{-1}$, i.e.,

$$
\left[\begin{array}{ll}
\widehat{\mathcal{M}}_{k} & \widehat{\mathcal{N}}_{k}
\end{array}\right]\left[\begin{array}{l}
\mathcal{N}_{k} \\
\mathcal{M}_{k}
\end{array}\right]=0
$$

Doubling: the swap

$$
\left[\begin{array}{cccc}
I & \widehat{G}_{k} & \widehat{E}_{k} & 0 \\
0 & \widehat{F}_{k} & \widehat{H}_{k} & I
\end{array}\right]\left[\begin{array}{cc}
E_{k} & 0 \\
H_{k} & I \\
I & G_{k} \\
0 & E_{k}^{*}
\end{array}\right]=0
$$

holds if

$$
\begin{aligned}
{\left[\begin{array}{ll}
\widehat{G}_{k} & \widehat{E}_{k} \\
\widehat{F}_{k} & \widehat{H}_{k}
\end{array}\right] } & =-\left[\begin{array}{cc}
E_{k} & 0 \\
0 & E_{k}^{*}
\end{array}\right]\left[\begin{array}{cc}
H_{k} & I \\
I & G_{k}
\end{array}\right]^{-1} \\
& =\left[\begin{array}{cc}
E_{k} & 0 \\
0 & E_{k}^{*}
\end{array}\right]\left[\begin{array}{cc}
G_{k}\left(I-H_{k} G_{k}\right)^{-1} & -\left(I-G_{k} H_{k}\right)^{-1} \\
-\left(I-H_{k} G_{k}\right)^{-1} & H_{k}\left(I-G_{k} H_{k}\right)^{-1}
\end{array}\right] .
\end{aligned}
$$

Doubling: the formulas

Putting everything together,

$$
\begin{aligned}
{\left[\begin{array}{ll}
E_{k+1} & 0 \\
H_{k+1} & I
\end{array}\right] } & =\left[\begin{array}{cc}
-E_{k}\left(I-G_{k} H_{k}\right)^{-1} & 0 \\
E_{k}^{*} H_{k}\left(I-G_{k} H_{k}\right)^{-1} & I
\end{array}\right]\left[\begin{array}{cc}
E_{k} & 0 \\
H_{k} & I
\end{array}\right] \\
& =\left[\begin{array}{cc}
-E_{k}\left(I-G_{k} H_{k}\right)^{-1} E_{k} & 0 \\
H_{k}+E_{k}^{*} H_{k}\left(I-G_{k} H_{k}\right)^{-1} E_{k} & I
\end{array}\right]
\end{aligned}
$$

and an analogous computation gives E_{k+1}^{*}, G_{k+1} :
Structured doubling algorithm

$$
\begin{aligned}
E_{k+1} & =-E_{k}\left(I-G_{k} H_{k}\right)^{-1} E_{k} \\
G_{k+1} & =G_{k}+E_{k} G_{k}\left(I-H_{k} G_{k}\right)^{-1} E_{k}^{*} \\
H_{k+1} & =H_{k}+E_{k}^{*} H_{k}\left(I-G_{k} H_{k}\right)^{-1} E_{k}
\end{aligned}
$$

SDA: details

Note that (even when the middle term does not converge)
$G_{k}\left(I-H_{k} G_{k}\right)^{-1}=G_{k}+G_{k} H_{k} G_{k}+G_{k} H_{k} G_{k} H_{k} G_{k}+\cdots=\left(I-G_{k} H_{k}\right)^{-1} G_{k}$,
and this matrix is symmetric. If $G_{k}=B_{k} B_{k}^{*}$, then it can also be rewritten as $B_{k}\left(I-B_{k}^{*} H_{k} B_{k}\right)^{-1} B_{k}^{*}$ (inverting a symmetric matrix).

Monotonicity If $H_{k} \preceq 0$ then $G_{k}\left(I-H_{k} G_{k}\right)^{-1} \succeq 0$. Hence, $0 \preceq G_{0} \preceq G_{1} \preceq \ldots$, and $0 \succeq H_{0} \succeq H_{1} \succeq H_{2} \succeq \ldots$
Cost As much as a $2 n \times 2 n$ inversion $M^{-1} N$, if you put everything together. Unlike the sign algorithm, we have a bound $\sigma_{\min }\left(I-H_{k} G_{k}\right) \geq 1$ (because $G_{k} \succeq 0, H_{k} \preceq 0$).

SDA: the dual equation

To analyze convergence, we need to introduce another matrix. Let Y be the matrix such that

$$
\mathcal{H}\left[\begin{array}{c}
-Y \\
I
\end{array}\right]=\left[\begin{array}{cc}
A & -G \\
-Q & -A^{*}
\end{array}\right]\left[\begin{array}{c}
-Y \\
I
\end{array}\right]=\left[\begin{array}{c}
-Y \\
I
\end{array}\right] \widehat{\mathcal{R}}
$$

is the anti-stable invariant subspace of \mathcal{H}, i.e., $\Lambda(\widehat{\mathcal{R}}) \subset R H P$. $\left[\begin{array}{l}I \\ Y\end{array}\right]$ spans the stable subspace of $\mathcal{H}^{*}=-J \mathcal{H} J$; we can prove that the subspace has this form if $\left(A^{T}, C^{T}\right)$ controllable (typically satisfied).

SDA: convergence (intuitively)

Intuitive view $E_{k} \rightarrow 0$, approximately squared at each time. Hence

$$
\mathcal{H}_{k}=\left[\begin{array}{ll}
I & G_{k} \\
0 & E_{k}^{*}
\end{array}\right]^{-1}\left[\begin{array}{ll}
E_{k} & 0 \\
H_{k} & I
\end{array}\right]
$$

has n eigenvalues $\rightarrow 0$ and n that $\rightarrow \infty$. ker $\mathcal{H}_{k} \approx\left[\begin{array}{c}1 \\ -H_{k}\end{array}\right]$, so $-H_{k} \rightarrow X$.
Dually, "ker \mathcal{H}_{k}^{-1} " (a thing that shouldn't exist... $) \approx\left[\begin{array}{c}-G_{k} \\ I\end{array}\right]$, so $G_{k} \rightarrow Y$.

SDA convergence (formally)

More formally

$$
\mathcal{H}_{0}\left[\begin{array}{c}
I \\
X
\end{array}\right]=(I-\mathcal{H})^{-1}(I+\mathcal{H})\left[\begin{array}{c}
I \\
X
\end{array}\right]=\left[\begin{array}{c}
I \\
X
\end{array}\right](I-\mathcal{R})^{-1}(I+\mathcal{R})
$$

where $\mathcal{S}=(I-\mathcal{R})^{-1}(I+\mathcal{R})$ has all eigenvalues in the unit circle.

$$
\left[\begin{array}{cc}
I & G_{k} \\
0 & E_{k}^{*}
\end{array}\right]\left[\begin{array}{c}
I \\
X
\end{array}\right]=\left[\begin{array}{l}
I \\
X
\end{array}\right]\left[\begin{array}{ll}
E_{k} & 0 \\
H_{k} & I
\end{array}\right]\left[\begin{array}{c}
I \\
X
\end{array}\right] \mathcal{S}^{2^{k}}
$$

which implies

$$
\begin{aligned}
E_{k} & =\left(I+G_{k} X\right) \mathcal{S}^{2^{k}} \\
H_{k}+X & =E_{k}^{*} X \mathcal{S}^{2^{k}}=\left(\mathcal{S}^{2^{k}}\right)^{*}\left(I+X G_{k}\right) \mathcal{S}^{2^{k}} \succeq 0
\end{aligned}
$$

The same computation on the dual equation gives $G_{k} \preceq Y$, so G_{k} is bounded and $E_{k} \rightarrow 0, H_{k}+X \rightarrow 0$ (quadratically as $\mathcal{S}^{2^{k}}$).

