Sign-like methods for CAREs

Matrix sign iteration

$$X_{k+1} = \frac{1}{2}(X_k + X_k^{-1}), \quad X_0 = \mathcal{H}.$$

It is not difficult to see that X_k is Hamiltonian at each step (i.e., $JX_k = -X_k^*J$). Just show that

- ▶ If M is Hamiltonian, then M^{-1} is Hamiltonian, too.
- ▶ If M_1 , M_2 are Hamiltonian, then $M_1 + M_2$ is Hamiltonian, too.

(Guiding idea: Hamiltonian matrices are 'like antisymmetric ones': properties that you expect for antisymmetric matrices will often hold for Hamiltonian, too.)

Structure-preserving sign iteration

In machine arithmetic, the X_k won't be exactly Hamiltonian — unless we modify our algorithm to ensure that they are.

Observation: ${\mathcal H}$ is Hamiltonian iff $J{\mathcal H}$ is symmetric.

Rewrite the iteration in terms of $Z_k := JX_k$:

$$Z_{k+1} = \frac{1}{2}(Z_k + JZ_k^{-1}J), \quad Z_0 = J\mathcal{H}.$$

Will preserve symmetry exactly (assuming the method we use for inversion does).

We can incorporate scaling.

It is in some sense 'working on even pencils': given an even pencil $\lambda J - Z_k$, construct $\lambda J - Z_{k+1}$ (will see more of this idea in the following).

Towards doubling

Recall: in the sign iteration, if we set $Y_k = (I - X_k)^{-1}(I + X_k)$, then $Y_{k+1} = -Y_k^2$.

In an ideal world without rounding errors, we could compute Y_0, Y_1, Y_2, \ldots , and then get the stable invariant subspace as $\ker Y_{\infty}$ (or, rather, the invariant subspace associated to the n smallest singular values of Y_{∞} , since in an ideal world without rounding errors it is nonsingular).

We can do something similar, if we work in a suitable format.

Standard Symplectic Form

Goal: write $Y_0 = (I - \mathcal{H})^{-1}(I + \mathcal{H})$ as

$$Y_0 = \begin{bmatrix} I & G_0 \\ 0 & F_0 \end{bmatrix}^{-1} \begin{bmatrix} E_0 & 0 \\ H_0 & I \end{bmatrix}.$$

Trick: find M such that

$$M\left[(I-\mathcal{H})\quad (I+\mathcal{H})\right] = \begin{bmatrix} I & G_0 & E_0 & 0\\ 0 & F_0 & H_0 & I \end{bmatrix}.$$

Solution: M is the inverse of block columns (1, 4).

Structural properties:

- if \mathcal{H} is Hamiltonian, Y_0 is symplectic. Proof: via $(I - \mathcal{H})^* J(I - \mathcal{H}) = (I + \mathcal{H})^* J(I + \mathcal{H})$.
- ▶ If Y_0 is symplectic, $E_0 = F_0^*$, $G_0 = G_0^*$, $H_0 = H_0^*$.
- ▶ Moreover, if $G \succeq 0$, $H \succeq 0$, then $G_0 \succeq 0$, $H_0 \preceq 0$ (tedious).

Doubling algorithm

Plan Given
$$Y_k = \begin{bmatrix} I & G_k \\ 0 & E_k^* \end{bmatrix}^{-1} \begin{bmatrix} E_k & 0 \\ H_k & I \end{bmatrix}$$
, compute
$$Y_{k+1} = -Y_k^2 = \begin{bmatrix} I & G_{k+1} \\ 0 & E_{k+1}^* \end{bmatrix}^{-1} \begin{bmatrix} E_{k+1} & 0 \\ H_{k+1} & I \end{bmatrix}.$$

Similar to the 'inverse-free sign method' described earlier.

The swap: If $Y_k = \mathcal{M}_k^{-1} \mathcal{N}_k$, then $-Y_k^2 = -\mathcal{M}_k^{-1} \mathcal{N}_k \mathcal{M}_k^{-1} \mathcal{N}_k = \mathcal{M}_k^{-1} \widehat{\mathcal{M}}_k^{-1} \widehat{\mathcal{N}}_k \mathcal{N}_k = (\widehat{\mathcal{M}}_k \mathcal{M}_k)^{-1} (\widehat{\mathcal{N}}_k \mathcal{N}_k)$, where $\widehat{\mathcal{M}}_k, \widehat{\mathcal{N}}_k$ satisfy $\widehat{\mathcal{M}}_k^{-1} \widehat{\mathcal{N}}_k = -\mathcal{N}_k \mathcal{M}_k^{-1}$, i.e.,

$$\begin{bmatrix} \widehat{\mathcal{M}}_k & \widehat{\mathcal{N}}_k \end{bmatrix} \begin{vmatrix} \mathcal{N}_k \\ \mathcal{M}_k \end{vmatrix} = 0.$$

Doubling: the swap

$$\begin{bmatrix} I & \widehat{G}_k & \widehat{E}_k & 0 \\ 0 & \widehat{F}_k & \widehat{H}_k & I \end{bmatrix} \begin{bmatrix} E_k & 0 \\ H_k & I \\ I & G_k \\ 0 & E_k^* \end{bmatrix} = 0$$

holds if

$$\begin{bmatrix}
\widehat{G}_{k} & \widehat{E}_{k} \\
\widehat{F}_{k} & \widehat{H}_{k}
\end{bmatrix} = -\begin{bmatrix}
E_{k} & 0 \\
0 & E_{k}^{*}
\end{bmatrix} \begin{bmatrix}
H_{k} & I \\
I & G_{k}
\end{bmatrix}^{-1}
= \begin{bmatrix}
E_{k} & 0 \\
0 & E_{k}^{*}
\end{bmatrix} \begin{bmatrix}
G_{k}(I - H_{k}G_{k})^{-1} & -(I - G_{k}H_{k})^{-1} \\
-(I - H_{k}G_{k})^{-1} & H_{k}(I - G_{k}H_{k})^{-1}
\end{bmatrix}.$$

Doubling: the formulas

Putting everything together,

$$\begin{bmatrix} E_{k+1} & 0 \\ H_{k+1} & I \end{bmatrix} = \begin{bmatrix} -E_k(I - G_k H_k)^{-1} & 0 \\ E_k^* H_k(I - G_k H_k)^{-1} & I \end{bmatrix} \begin{bmatrix} E_k & 0 \\ H_k & I \end{bmatrix}$$
$$= \begin{bmatrix} -E_k(I - G_k H_k)^{-1} E_k & 0 \\ H_k + E_k^* H_k(I - G_k H_k)^{-1} E_k & I \end{bmatrix}$$

and an analogous computation gives E_{k+1}^* , G_{k+1} :

Structured doubling algorithm

$$E_{k+1} = -E_k (I - G_k H_k)^{-1} E_k,$$

$$G_{k+1} = G_k + E_k G_k (I - H_k G_k)^{-1} E_k^*,$$

$$H_{k+1} = H_k + E_k^* H_k (I - G_k H_k)^{-1} E_k.$$

SDA: details

Note that (even when the middle term does not converge)

$$G_k(I-H_kG_k)^{-1} = G_k+G_kH_kG_k+G_kH_kG_kH_kG_k+\cdots = (I-G_kH_k)^{-1}G_k,$$

and this matrix is symmetric. If $G_k = B_k B_k^*$, then it can also be rewritten as $B_k (I - B_k^* H_k B_k)^{-1} B_k^*$ (inverting a symmetric matrix).

Monotonicity If
$$H_k \leq 0$$
 then $G_k(I - H_k G_k)^{-1} \geq 0$. Hence, $0 \leq G_0 \leq G_1 \leq \ldots$, and $0 \geq H_0 \geq H_1 \geq H_2 \geq \ldots$

Cost As much as a $2n \times 2n$ inversion $M^{-1}N$, if you put everything together. Unlike the sign algorithm, we have a bound $\sigma_{\min}(I - H_k G_k) \ge 1$ (because $G_k \succeq 0$, $H_k \preceq 0$).

SDA: the dual equation

To analyze convergence, we need to introduce another matrix. Let Y be the matrix such that

$$\mathcal{H} \begin{bmatrix} -Y \\ I \end{bmatrix} = \begin{bmatrix} A & -G \\ -Q & -A^* \end{bmatrix} \begin{bmatrix} -Y \\ I \end{bmatrix} = \begin{bmatrix} -Y \\ I \end{bmatrix} \widehat{\mathcal{R}}$$

is the anti-stable invariant subspace of \mathcal{H} , i.e., $\Lambda(\widehat{\mathcal{R}}) \subset RHP$.

 $\begin{bmatrix} I \\ Y \end{bmatrix}$ spans the stable subspace of $\mathcal{H}^* = -J\mathcal{H}J$; we can prove that the subspace has this form if (A^T,C^T) controllable (typically satisfied).

SDA: convergence (intuitively)

Intuitive view $E_k \to 0$, approximately squared at each time. Hence

$$\mathcal{H}_k = \begin{bmatrix} I & G_k \\ 0 & E_k^* \end{bmatrix}^{-1} \begin{bmatrix} E_k & 0 \\ H_k & I \end{bmatrix}$$

has
$$n$$
 eigenvalues $\to 0$ and n that $\to \infty$. $\ker \mathcal{H}_k \approx \begin{bmatrix} I \\ -H_k \end{bmatrix}$, so $-H_k \to X$.

Dually, "ker \mathcal{H}_k^{-1} " (a thing that shouldn't exist...) $\approx \begin{bmatrix} -G_k \\ I \end{bmatrix}$, so $G_k \to Y$.

SDA convergence (formally)

More formally

$$\mathcal{H}_0 \begin{bmatrix} I \\ X \end{bmatrix} = (I - \mathcal{H})^{-1} (I + \mathcal{H}) \begin{bmatrix} I \\ X \end{bmatrix} = \begin{bmatrix} I \\ X \end{bmatrix} (I - \mathcal{R})^{-1} (I + \mathcal{R}).$$

where $S = (I - R)^{-1}(I + R)$ has all eigenvalues in the unit circle.

$$\begin{bmatrix} I & G_k \\ 0 & E_k^* \end{bmatrix} \begin{bmatrix} I \\ X \end{bmatrix} = \begin{bmatrix} I \\ X \end{bmatrix} \begin{bmatrix} E_k & 0 \\ H_k & I \end{bmatrix} \begin{bmatrix} I \\ X \end{bmatrix} S^{2^k}.$$

which implies

$$E_k = (I + G_k X)S^{2^k},$$

 $H_k + X = E_k^* X S^{2^k} = (S^{2^k})^* (I + X G_k)S^{2^k} \succeq 0.$

The same computation on the dual equation gives $G_k \leq Y$, so G_k is bounded and $E_k \to 0$, $H_k + X \to 0$ (quadratically as \mathcal{S}^{2^k}).