Corso di Laurea in Matematica Geometria 2 - Foglio di esercizi n.ro 1 del 24/10/2020

1. Si considerino i punti di $\mathbb{P}^2(\mathbb{R})$ dati da

$$P_1 = [1, 0, 0], \quad P_2 = [0, 1, 0], \quad P_3 = [0, 0, 1], \quad P_4 = [1, 1, 1],$$

 $Q_1 = [1, -1, -1], \quad Q_2 = [1, 3, 1], \quad Q_3 = [1, 1, -1], \quad Q_4 = [1, 1, 1],$

- (1) Si determini una formula esplicita per la proiettività $f: \mathbb{P}^2(\mathbb{R}) \to \mathbb{P}^2(\mathbb{R})$) tale che $f(P_i) = Q_i$ per i = 1, 2, 3, 4.
- (2) Si determinino tutte le rette $s \subseteq \mathbb{P}^2(\mathbb{R})$ tali che f(s) = s.

Soluzione. (1): I punti P_1 , P_2 , P_3 , P_4 sono in posizione generale, e definiscono pertanto un sistema di riferimento proiettivo, una cui base normalizzata associata è $\{(1,0,0),(0,1,0),(0,0,1)\}$. Analogamente, un semplice conto mostra che anche Q_1 , Q_2 , Q_3 , Q_4 definiscono un sistema di riferimento proiettivo, una cui base normalizzata associata è $\{(1,-1,-1),(1,3,1),(-1,-1,1)\}$. Per il Teorema fondamentale delle trasformazioni proiettive, esiste allora un'unica proiettività f che verifichi le proprietà richieste, e tale f è indotta dall'applicazione lineare definita dalla matrice

$$B = \left(\begin{array}{rrr} 1 & 1 & -1 \\ -1 & 3 & -1 \\ -1 & 1 & 1 \end{array}\right) .$$

(2): Un semplice calcolo mostra che il polinomio caratteristico di B è dato da $(2-t)^2(1-t)$. L'autospazio di B relativo all'autovalore 2 ha dimensione due, e, poste su \mathbb{R}^3 coordinate (x_0, x_1, x_2) , ha equazione $x_0 - x_1 + x_2 = 0$. L'autospazio di B relativo all'autovalore 1 ha dimensione uno ed è generato da v = (1, 1, 1). Ne segue che, se r è la retta di $\mathbb{P}^2(\mathbb{R})$ di equazione $x_0 - x_1 + x_2 = 0$ e $P = [1, 1, 1] = [v] \in \mathbb{P}^2(\mathbb{R})$, l'insieme dei punti fissi di f è dato da $r \cup \{P\}$.

Dimostriamo ora che tutte e sole le rette f-invarianti sono la retta r e le rette passanti per P. Che tali rette siano invarianti è facile: r è addirittura fissata puntualmente, e se s è una retta passante per P, allora $r \cap s = \{Q\}$, con $Q \neq P$, per cui f(s) = f(L(P,Q)) = L(f(P), f(Q)) = L(P, Q) = s.

Viceversa, sia s una retta tale che f(s)=s. Se $P\in s$ abbiamo finito, supponiamo perciò $P\notin s$. Sia $A\in s$. Lo spazio L(P,A) è una retta (in quanto $P\neq A$) distinta da s (in quanto $P\notin s$), per cui $L(P,A)\cap s=A$. Poiché L(P,A) ed s sono f-invarianti, si ha $f(A)=f(L(P,A)\cap s)=f(L(P,A))\cap f(s)=L(P,A)\cap s=A$. Dunque A è fissato da f, ed essendo $A\neq P$ si ha necessariamente $A\in r$. Data l'arbitrarietà di A, se ne deduce $s\subseteq r$, per cui s=r.

2. Siano P_1, P_2, P_3 punti di $\mathbb{P}^2(\mathbb{K})$ in posizione generale, e sia $r \subseteq \mathbb{P}^2(\mathbb{K})$ una retta tale che $P_i \notin r$ per i = 1, 2, 3.

- (1) Si mostri che esiste un'unica proiettività $f: \mathbb{P}^2(\mathbb{K}) \to \mathbb{P}^2(\mathbb{K})$ tale che $f(P_1) = P_1$, $f(P_2) = P_3$, $f(P_3) = P_2$ e f(r) = r.
- (2) Si mostri che l'insieme dei punti di fissi di f è dato dall'unione di un punto $M \in r$ ed una retta s con $M \notin s$.

Soluzione. (1) Siano $A = L(P_1, P_2) \cap r$, $B = L(P_1, P_3) \cap r$. È immediato verificare che i punti A, B, P_2, P_3 formano un sistema di riferimento proiettivo di $\mathbb{P}_2(\mathbb{K})$. Se f è una proiettività che verifica le condizioni richieste si ha $f(L(P_1, P_2)) = L(f(P_1), f(P_2)) = L(P_1, P_3)$, per cui $f(A) = f(r \cap L(P_1, P_2)) = r \cap L(P_1, P_3) = B$. Analogamente si mostra che f(B) = A per cui, essendo per ipotesi $f(P_2) = P_3$ e $f(P_3) = P_2$, per il Teorema fondamentale delle trasformazioni proiettive se una tale f esiste è necessariamente unica. Sia dunque $f: \mathbb{P}^2(\mathbb{K}) \to \mathbb{P}^2(\mathbb{K})$ l'unica proiettività tale che $f(P_2) = P_3$, $f(P_3) = P_2$, f(A) = B, f(B) = A. Si ha

$$f(P_1) = f(L(A, P_2) \cap L(B, P_3)) = L(B, P_3) \cap L(A, P_2) = P_1$$

е

$$f(r) = f(L(A, B)) = L(f(A), f(B)) = L(B, A) = r$$
,

per cui f verifica le condizioni descritte nell'enunciato.

(2) Se $M = L(P_2, P_3) \cap r$ si ha

$$f(M) = f(L(P_2, P_3)) \cap f(r) = L(P_2, P_3) \cap r = M$$
.

Inoltre $f(L(A, P_3)) = L(B, P_2)$ e $f(L(B, P_2)) = L(A, P_3)$, per cui anche il punto $Q = L(A, P_3) \cap L(B, P_2)$ è lasciato fisso da f. Poiché $L(A, P_3) \cap r = A$, $L(B, P_2) \cap r = B$ si ha poi $Q \notin r$, ed inoltre $Q \neq P_1$ in quanto altrimenti B giacerebbe su $L(P_1, P_2)$ e P_1, P_2, P_3 sarebbero allineati. Pertanto posto $s = L(Q, P_1)$ è ben definito il punto $N = s \cap r$. Poiché $Q \in P_1$ sono lasciati fissi da f si ha f(s) = s, per cui $f(N) = f(s \cap r) = s \cap r = N$. Lasciando fissi i tre punti distinti P_1, Q, N , la restrizione di f a s coincide perciò con l'identità di s.

Poiché P_2, P_3, A, B sono in posizione generale, i punti $M = L(P_2, P_3) \cap L(A, B), P_1 = L(P_3, B) \cap L(P_2, A), Q = L(A, P_3) \cap L(B, P_2)$ non sono allineati (cfr. Esercizio 5 di questo foglio), per cui $M \in s = L(P_1, Q)$. Il luogo dei punti fissi di f contiene pertanto la retta s ed il punto $M \in r$ che non giace su s. D'altronde, se f ammettesse altri punti fissi agirebbe come l'identità su un sistema di riferimento di $\mathbb{P}^2(\mathbb{K})$, e sarebbe perciò l'identità, contro l'ipotesi che si abbia $f(P_2) = P_3 = P_2$.

- 3. Siano $p \in \mathbb{N}$ un numero primo, $q = p^n$ per un qualche $n \in \mathbb{N}$, e \mathbb{K} il campo finito \mathbb{F}_q .
 - (1) Dato $m \in \mathbb{N}$, si calcoli la cardinalità di $\mathbb{P}^m(\mathbb{K})$.
- (2) Dati due punti $P, P' \in \mathbb{P}^2(\mathbb{K})$ e due rette $r, r' \subseteq \mathbb{P}^2(\mathbb{K})$, tali che $P \notin r$ e $P' \notin r'$, si determini quante sono le proiettività $f : \mathbb{P}^2(\mathbb{K}) \to \mathbb{P}^2(\mathbb{K})$ tali che f(P) = P' e f(r) = r'.

Soluzione. (1) Per qualsiasi $m \geq 1$ possiamo scrivere $\mathbb{P}^m(\mathbb{K}) = U_0 \cup H_0$, dove H_0 è l'iperpiano di equazione $x_0 = 0$ e U_0 la carta affine costituita dai punti $[x_0, \dots, x_m]$ tali

che $x_0 \neq 0$. Ricordando che ci sono bigezioni $U_0 \cong \mathbb{K}^m$ e $H_0 \cong \mathbb{P}^{m-1}(\mathbb{K})$ e che $H_0 \cap U_0 = \emptyset$, otteniamo

$$|\mathbb{P}^m(\mathbb{K})| = |\mathbb{K}^m| + |\mathbb{P}^{m-1}(\mathbb{K})|.$$

Visto che chiaramente si ha $|\mathbb{K}^m| = |\mathbb{K}|^m = q^m$, con una facile induzione, usando la formula precedente e $|\mathbb{P}^0(\mathbb{K})| = 1$, si ottiene $|\mathbb{P}^m(\mathbb{K})| = \sum_{i=0}^m q^i = 1 + q + \ldots + q^m$. Soluzione alternativa: ricordiamo che $\mathbb{P}^m(\mathbb{K}) = (\mathbb{K}^{m+1} \setminus \{0\}) / \sim$ dove $v \sim w$ se esiste

Soluzione alternativa: ricordiamo che $\mathbb{P}^m(\mathbb{K}) = (\mathbb{K}^{m+1} \setminus \{0\})/\sim$ dove $v \sim w$ se esiste $\lambda \in \mathbb{K}^*$ tale che $v = \lambda w$. Visto che chiaramente le classi di equivalenza per la relazione \sim hanno tutte cardinalità $|\mathbb{K}^*| = q - 1$, e $|\mathbb{K}^{m+1} \setminus \{0\}| = q^{m+1} - 1$, abbiamo

$$|\mathbb{P}^m(\mathbb{K})| = |\mathbb{K}^{m+1} \setminus \{0\}|/(q-1) = (q^{m+1}-1)/(q-1),$$

che coincide con la risposta trovata nella soluzione precedente.

(2) Fissiamo arbitrariamente due punti distinti A, B in r, e un punto Q nel complementare dell'unione $r \cup L(P, A) \cup L(P, B)$. La quaterna ordinata $\{P, A, B, Q\}$ è un riferimento proiettivo di $\mathbb{P}^2(\mathbb{K})$.

Le proiettività che soddisfano le condizioni del testo sono precisamente quelle che mandano P in P', A in un punto $A' \in r'$, B in un punto $B' \in r' \setminus \{A'\}$, e Q in un punto Q' nel complementare dell'unione $r' \cup L(P',A') \cup L(P',B')$. Per il Teorema fondamentale delle trasformazioni proiettive, c'è una bigezione tra l'insieme delle proiettività cercate e le quaterne ordinate $\{P',A',B',Q'\}$ di punti di $\mathbb{P}^2(\mathbb{K})$ con le proprietà appena elencate. Basta quindi contare il numero di tali quaterne.

Il punto P' è fissato dal problema, per il punto $A' \in r'$ ci sono $|r'| = |\mathbb{P}^1(\mathbb{K})| = q + 1$ scelte, per il punto B' ce ne sono $|r' \setminus \{A'\}| = q$, e per il punto Q' ce ne sono

$$|\mathbb{P}^{2}(\mathbb{K}) \setminus (r' \cup L(P', A') \cup L(P', B'))| = (q^{2} + q + 1) - (q + 1) - q - (q - 1)$$
$$= (q - 1)^{2}$$

dove il termine -(q+1) esclude include i punti di r', il termine -q quelli di $L(P',A') \setminus r'$, e il termine -(q-1) quelli di $L(P',B') \setminus (r' \cup L(P',A'))$.

Dato che queste scelte sono indipendenti, ci sono esattamente $(q+1)q(q-1)^2$ proiettività con le proprietà richieste.

- **4.** Siano r_0, r_1 le rette di $\mathbb{P}^2(\mathbb{R})$ di equazione rispettivamente $x_0 x_1 = 0$ e $x_1 x_2 = 0$ (dove $[x_0, x_1, x_2]$ sono le coordinate omogenee standard di $\mathbb{P}^2(\mathbb{R})$).
 - (1) Si mostri che esiste un'unica prospettività $f: r_0 \to r_1$ tale che

$$f([1:1:0]) = [0:1:1]\,, \qquad f([0:0:1]) = [1:0:0]\ .$$

(2) Si calcoli il centro O della prospettività f appena trovata.

Soluzione. (1): Sia $A = r_0 \cap r_1 = [1, 1, 1]$. Per il Teorema fondamentale delle trasformazioni proiettive, esiste un'unica proiettività $f: r_0 \to r_1$ tale che f([1:1:0]) = [0:1:1], f([0:0:1]) = [1:0:0] ed f(A) = A. Per quanto visto a lezione, tale proiettività, fissando $r_0 \cap r_1$, è una prospettività. L'unicità di una tale prospettività segue ancora dal Teorema fondamentale delle trasformazioni proiettive.

(2): Per definizione di prospettività, per ogni $P \in r_0$ il centro O deve essere allineato con P ed f(P). Dunque

$$O = L([1:1:0], f([1:1:0])) \cap L([0:0:1], f([0:0:1]))$$

= $L([1:1:0], [0:1:1]) \cap L([0:0:1], [1:0:0])$
= $\{x_1 - x_2 + x_3 = 0\} \cap \{x_2 = 0\} = [1, 0, -1].$

5. Siano A, B, C, D punti di $\mathbb{P}^2(\mathbb{K})$ in posizione generale. Si mostri che i punti

$$L(A,B) \cap L(C,D)$$
, $L(A,C) \cap L(B,D)$, $L(A,D) \cap L(B,C)$

non sono allineati.

Soluzione. Scegliendo coordinate tali che A = [1,0,0], B = [0,1,0], C = [0,0,1], D = [1,1,1], si calcola facilmente che i tre punti descritti nell'enunciato hanno coordinate [1,1,0], [1,0,1], [0,1,1]. Mettendo in colonna le coordinate di questi tre punti si ottiene una matrice 3×3 con determinante non nullo, e da ciò segue la tesi.

6. Siano r, s rette di $\mathbb{P}^3(\mathbb{K})$ tali che $r \cap s = \emptyset$, e sia $P \notin r \cup s$. Abbiamo visto a lezione che esiste un'unica retta $l \subseteq \mathbb{P}^3(\mathbb{K})$ tale che $P \in l$, $l \cap r \neq \emptyset$ e $l \cap s \neq \emptyset$. Si determinino equazioni cartesiane per la retta l nel caso in cui la retta r abbia equazioni $2x_1 - 3x_2 + x_3 = x_0 + x_3 = 0$, la retta s abbia equazioni $x_0 - x_2 + 2x_3 = 2x_0 + x_1 = 0$, e P = [0, 1, 0, 1].

Soluzione. Abbiamo visto a lezione che $l=L(P,r)\cap L(P,s)$. Le equazioni cartesiane di l saranno perciò date dall'unione di un'equazione cartesiana per L(P,r) ed un'equazione cartesiana per L(P,s). Poiché r ha equazioni $2x_1-3x_2+x_3=x_0+x_3=0$, se $\lambda,\mu\in\mathbb{K}$ non sono entrambi nulli, il piano di equazione $\lambda(2x_1-3x_2+x_3)+\mu(x_0+x_3)=0$ contiene la retta r. Un tale piano contiene anche P se e solo se $\lambda(0-0+1)+\mu(0+1)=0$, cioè se $\mu=-3\lambda$. Ponendo ad esempio $\lambda=1,\ \mu=-3$, si ottiene l'equazione cartesiana $-3x_0+2x_1-3x_2-2x_3=0$ per L(P,r). Procedendo analogamente, si ottiene per L(P,s) l'equazione cartesiana $-3x_0-2x_1-x_2+2x_3=0$. Le equazioni cartesiane di l sono pertanto $-3x_0+2x_1-3x_2-2x_3=-3x_0-2x_1-x_2+2x_3=0$.

7. Sia $f: \mathbb{P}^1(\mathbb{K}) \to \mathbb{P}^1(\mathbb{K})$ una proiettività diversa dall'identità. Si mostri che $f^2 = \mathrm{Id}$ se e solo se esistono punti distinti $P, Q \in \mathbb{P}^1(\mathbb{K})$ tali che f(P) = Q e f(Q) = P.

Soluzione. Se f è diversa dall'identità esiste $P \in \mathbb{P}^1(\mathbb{K})$ tale che $f(P) \neq P$. Posto Q = f(P), se $f^2 = \operatorname{Id}$ si ha allora f(Q) = P. Ciò prova un'implicazione.

Per quanto riguarda il viceversa siano $v_1, v_2 \in \mathbb{K}^2$ rappresentanti di P e Q, rispettivamente. Poiché $P \neq Q$ i vettori v_1, v_2 sono indipendenti, e sono perciò una base di \mathbb{K}^2 . Se $\varphi \colon \mathbb{K}^2 \to \mathbb{K}^2$ è un'applicazione lineare che induce f, abbiamo allora $\varphi(v_1) = \lambda v_1$, $\varphi(v_2) = \mu v_2$ per qualche $\lambda, \mu \in \mathbb{K}^*$. Ne segue che $\varphi^2(v_1) = \lambda \mu v_1$, $\varphi^2(v_2) = \lambda \mu v_2$, per cui φ^2 è un multiplo dell'identità, e $f^2 = \operatorname{Id}$.

- **8.** Siano r_0, r_1, r_2 tre rette di $\mathbb{P}^2(\mathbb{R})$ non concorrenti (cioè tali che $r_0 \cap r_1 \cap r_2 = \emptyset$).
 - (1) Si mostri che esistono infinite proiettività $f: \mathbb{P}^2(\mathbb{R}) \to \mathbb{P}^2(\mathbb{R})$ tali che $f(r_0) = r_1$, $f(r_1) = r_2$, $f(r_2) = r_0$.
 - (2) Sia f una proiettività con le proprietà descritte al punto precedente. Si mostri che $f^3 = \text{Id}$.

Soluzione. Sfruttando il fatto che le tre rette non sono concorrenti si verifica facilmente che sono a due a due distinte, e che i punti $P_0 = r_1 \cap r_2$, $P_1 = r_0 \cap r_2$, $P_2 = r_0 \cap r_1$ sono in posizione generale. Possiamo dunque scegliere un punto P tale che P_0, P_1, P_2, P sia un riferimento proiettivo, e fissare coordinate omogenee indotte da tale riferimento, così che $P_0 = [1:0:0], P_1 = [0:1:0], P_2 = [0:0:1], e P = [1:1:1].$ Per qualsiasi scelta di un punto Q in posizione generale rispetto a P_0, P_1, P_2 , per il Teorema Fondamentale delle Trasformazioni Proiettive esiste una proiettività $f: \mathbb{P}^2(\mathbb{R}) \to \mathbb{P}^2(\mathbb{R})$ tale che $f(P_0) = P_1, f(P_1) = P_2, f(P_2) = P_0, f(P) = Q$. Una tale f verifica

$$f(r_0) = f(L(P_1, P_2)) = L(f(P_1), f(P_2)) = L(P_2, P_0) = r_1$$

e analogamente $f(r_1) = r_2$, $f(r_2) = r_0$. Poiché al variare di Q si ottengono infinite possibilità per f, ciò dimostra (1).

- (2): Se f permuta ciclicamente le rette r_0, r_1, r_2 , allora necessariamente permuta ciclicamente i loro punti di intersezione P_0, P_1, P_2 . Sia $\{v_0, v_1, v_2\}$ una base normalizzata associata a P_0, P_1, P_2, P , così che v_i sia un rappresentante di P_i per i = 0, 1, 2. Sia $f = [\varphi]$, dove $\varphi \colon \mathbb{R}^3 \to \mathbb{R}^3$ è lineare ed invertibile. Allora $\varphi(v_0) = \lambda v_1, \ \varphi(v_1) = \mu v_2$ e $\varphi(v_2) = \eta v_0$, da cui $\varphi^3 = \lambda \mu \eta \cdot \mathrm{Id}$, e $f^3 = [\varphi^3] = \mathrm{Id}$.
 - 9. Si consideri il morfismo di anelli $\psi \colon \mathbb{K}[x_1, x_2, \dots, x_n] \to \mathbb{K}[t, x_1, \dots, x_n]$ definito da $\psi(f)(t, x_1, x_2, \dots, x_n) = f(tx_1, tx_2, \dots, tx_n)$.

Sia $f \in \mathbb{K}[x_1, \dots, x_n]$. Si mostri che f è omogeneo di grado d se e solo se $\psi(f) = t^d \cdot f$. (Una freccia è ovvia; l'altra è stata utilizzata nella dimostrazione del fatto che il risultante rispetto a x_2 di polinomi omogenei in $\mathbb{K}[x_0, x_1, x_2]$ è esso stesso omogeneo).

Soluzione. Il fatto che, se f è omogeneo di grado d, allora $\psi(f) = t^d \cdot f$ segue da una banale sostituzione.

Viceversa, sia $n = \deg f$, e sia $f = f_n + f_{n-1} + \ldots + f_1 + f_0$ la decomposizione di f tale che f_i sia omogeneo di grado i per ogni i. Supponiamo che si abbia

$$\psi(f) = t^d \cdot f = t^d (f_n + f_{n-1} + \dots + f_1 + f_0) .$$

Una banale sostituzione mostra che si ha anche

$$\psi(f) = t^n f_n + t^{n-1} f_{n-1} + \ldots + t f_1 + f_0 ,$$

da cui

$$(t^n - t^d)f_n + (t^{n-1} - t^d)f_{n-1} + \ldots + (t - t^d)f_1 + (1 - t^d)f_0 = 0$$
.

Affinché questa uguaglianza sia vera in $\mathbb{K}[t, x_1, \dots, x_n]$ l'unica possibilità è che si abbia $f_i = 0$ per ogni $i \neq d$, cioè che f sia omogeneo di grado d.

10. Siano \mathbb{K} un campo algebricamente chiuso, e sia \mathcal{C} una curva proiettiva in $\mathbb{P}^2(\mathbb{K})$ di grado positivo. Si mostri che $V(\mathcal{C})$ è un insieme infinito.

Soluzione. Nella lezione del 7/10/2020 si è dimostrato che, per ogni retta proiettiva $r \subseteq \mathbb{P}^2(\mathbb{K})$, si ha $r \cap V(\mathcal{C}) \neq \emptyset$. Ricordiamo ora che ogni campo algebricamente chiuso è infinito: di conseguenza, ogni retta di $\mathbb{P}^2(\mathbb{K})$ è infinita, e $\mathbb{P}^2(\mathbb{K})$ stesso è infinito.

Sia allora $P \in \mathbb{P}^2(\mathbb{K}) \setminus V(\mathcal{C})$ (tale P esiste, altrimenti $V(\mathcal{C}) = \mathbb{P}^2(\mathbb{K})$, ed abbiamo finito - questa eventualità è comunque impossibile, si veda l'esercizio seguente), e sia r una retta di $\mathbb{P}^2(\mathbb{K})$ non passante per P. Per quanto detto inizialmente, per ogni $A \in r$ esiste (almeno) un punto $Q_A \in L(P,A) \cap V(\mathcal{C})$. Poiché $P \notin V(\mathcal{C})$, inoltre, $Q_A \neq P$. Inoltre, se $A, B \in r$ sono distinti, allora $L(P,A) \cap L(P,B) = P$, per cui $Q_A \neq Q_B$. Poiché r contiene infiniti punti, ne segue che anche $V(\mathcal{C})$ è infinito.

11. Sia \mathbb{K} un campo infinito, e sia \mathcal{C} una curva proiettiva in $\mathbb{P}^2(\mathbb{K})$. Si mostri che $\mathbb{P}^2(\mathbb{K}) \setminus V(\mathcal{C})$ è un insieme infinito.

Soluzione. Sia C = [f], dove f è un polinomio omogeneo di grado d. Abbiamo visto a lezione che, se una retta proiettiva r verifica $r \subseteq V(C)$, allora r (o, più precisamente, la classe di equivalenza di una sua equazione cartesiana) è una componente irriducibile di C. Perciò, se V(C) contenesse d+1 rette proiettive distinte di equazioni g_1, \ldots, g_{d+1} , allora avremmo $C = [g_1] + [g_2] + \cdots + [g_{d+1}] + C'$ per qualche curva proiettiva C'. Ciò implicherebbe $\deg C = 1 + 1 + \cdots + 1 + \deg C' \geq d + 1$, il che è assurdo.

Poiché \mathbb{K} è infinito, esistono infinite rette proiettive distinte in $\mathbb{P}^2(\mathbb{K})$, perciò, per quanto visto nel paragrafo precedente, esiste una retta $r \subseteq \mathbb{P}^2(\mathbb{K})$ non contenuta in $V(\mathcal{C})$. Nella lezione del 7/10/2020 abbiamo dimostrato che allora $V(\mathcal{C})$ interseca r al più in d punti. Poiché r è un insieme infinito, ne segue che $r \setminus V(\mathcal{C})$ è infinito, da cui la tesi.

- 12. Sia \mathcal{C} una conica non degenere di $\mathbb{P}^2(\mathbb{C})$ avente equazione ${}^txAx=0$, dove A è una matrice simmetrica 3×3 a coefficienti in \mathbb{C} e $x={}^t(x_0,x_1,x_2)$. Per ogni $P=[v]\in\mathbb{P}^2(\mathbb{K})$, indichiamo con pol(P) la retta di equazione ${}^tvAx=0$. Inoltre, per ogni $Q\in V(\mathcal{C})$ indichiamo con τ_Q la tangente a \mathcal{C} in Q.
 - (1) Si mostri che, se $P \in V(\mathcal{C})$, allora $pol(P) = \tau_P$.
 - (2) Si mostri che, se $P \notin V(\mathcal{C})$, allora

$$pol(P) \cap V(\mathcal{C}) = \{ Q \in V(\mathcal{C}) \mid P \in \tau_Q \} .$$

Soluzione. (1): Sia $f(x) = {}^t x A x$ l'equazione di \mathcal{C} , e sia P = [v] un punto di $V(\mathcal{C})$. Si ha allora ${}^t v A v = 0$. Inoltre, se Q = [w] è un punto del piano proiettivo distinto da P, la retta r = L(P,Q) ammette la parametrizzazione $[\lambda,\mu] \mapsto [\lambda v + \mu w]$. La molteplicità di intersezione $I(\mathcal{C},r,P)$ è data dalla molteplicità di [1,0] come radice del polinomio $f(\lambda v + \mu w)$, cioè dalla molteplicità di 0 come radice del polinomio

$$f(v + \mu w) = {}^{t}(v + \mu w)A(v + \mu w) = {}^{t}vAv + (2\mu){}^{t}vAw + (\mu^{2}){}^{t}wAw.$$

Ricordando che ${}^{t}vAv = 0$, otteniamo

$$f(v + \mu w) = \mu(2^{t}vAw + \mu^{t}wAw) ,$$

per cui la retta r è tangente a C in P se e solo se ${}^{t}vAw = 0$, cioè se $Q = [w] \in pol(P)$. Ciò significa esattamente che $pol(P) = \tau_{P}$.

(2): Si osservi che, poiché A è simmetrica, per ogni coppia di punti P_1, P_2 in $\mathbb{P}^2(\mathbb{C})$ si ha $P_1 \in \text{pol}(P_2)$ se e solo se $P_2 \in \text{pol}(P_1)$ (tale fatto viene talora chiamato relazione di reciprocità).

Sia $P \notin V(\mathcal{C})$. Se $Q \in \text{pol}(P) \cap V(\mathcal{C})$, allora per quanto appena detto $P \in \text{pol}(Q) = \tau_Q$, dove l'ultima uguaglianza è stata dimostrata al punto (1). Dunque

$$pol(P) \cap V(C) \subseteq \{Q \in V(C) \mid P \in \tau_Q\}$$
.

Viceversa, se Q è un punto di $V(\mathcal{C})$ tale che $P \in \tau_Q = \text{pol}(Q)$, allora per reciprocità $Q \in \text{pol}(P)$, da cui

$${Q \in V(\mathcal{C}) \mid P \in \tau_Q} \subseteq \operatorname{pol}(P) \cap V(\mathcal{C}),$$

come voluto.

È peraltro possibile dimostrare (cosa non richiesta dal testo), che per ogni $P \notin V(\mathcal{C})$ l'insieme $V(\mathcal{C}) \cap \text{pol}(C)$ consiste esattamente di due punti: pertanto, da ogni punto esterno a \mathcal{C} è possibile condurre esattamente due tangenti a \mathcal{C} . Infatti, poiché \mathbb{C} è algebricamente chiuso, l'insieme $\text{pol}(P) \cap V(\mathcal{C})$ consiste di un punto o di due punti (poiché \mathcal{C} è non degenere, è irriducibile, e il suo supporto non può perciò contenere pol(P)). Tuttavia, se $\text{pol}(P) \cap V(\mathcal{C})$ consistesse di un solo punto Q, la molteplicità di interesezione $I(\mathcal{C}, r, Q)$ dovrebbe essere uguale a 2 (ciò discende dal fatto che un polinomio di grado due in una variabile avente esattamente una radice, ha tale radice come radice doppia). In altre parole, pol(P) dovrebbe essere tangente a \mathcal{C} in Q, e duque, per quanto visto in (1), dovremmo perciò avere pol(P) = pol(Q), da cui P = Q (poiché A è invertibile, le equazioni ${}^t v A x = 0$ e ${}^t v' A x = 0$ definiscono la stessa retta se e solo se [v] = [v']), il che è assurdo.

13. Siano P_1, \ldots, P_5 cinque punti in posizione generale in $\mathbb{P}^2(\mathbb{K})$. Si mostri che esiste un'unica conica proiettiva \mathcal{C} tale che $V(\mathcal{C})$ contiene tutti i punti P_1, \ldots, P_5 , e che tale conica è non-degenere. Cosa succede se i punti non sono in posizione generale? (Suggerimento: fissate un riferimento proiettivo appropriato, e cercate l'equazione della conica usando le coordinate omogenee indotte da questo riferimento.)

Soluzione. Lavoriamo nelle coordinate omogenee determinate dal riferimento proiettivo $\{P_1, P_2, P_3, P_4\}$. In queste coordinate,

$$P_1 = [1, 0, 0], P_2 = [0, 1, 0], P_3 = [0, 0, 1], P_4 = [1, 1, 1]$$

e fissiamo coordinate per $P_5 = [a, b, c]$ con $a, b, c \in \mathbb{K}$ non tutti nulli.

Inoltre sappiamo che P_5 non giace su nessuna delle rette passanti per due dei punti P_1, P_2, P_3, P_4 . Questa condizione è equivalente a

$$abc(a-b)(a-c)(b-c) \neq 0.$$

Infatti, la retta passante per P_i e P_j con $i \neq j$ e $1 \leq i, j \leq 3$ ha equazione $x_k = 0$, dove $k \in \{1, 2, 3\} \setminus \{i, j\}$, e la retta passante per P_i e P_4 con $1 \leq i \leq 3$ ha equazione $x_j - x_k = 0$, dove j, k sono i due elementi distinti di $1, 2, 3 \setminus \{i\}$. Il fatto che P_5 non stia su nessuna di queste rette è equivalente alla condizione (1).

Ora consideriamo l'equazione della conica generica

$$Ax_0^2 + Bx_1^2 + Cx_2^2 + Dx_0x_1 + Ex_0x_2 + Fx_1x_2 = 0.$$

Imponendo il passaggio per P_i con $1 \le i \le 3$ si ottiene A = B = C = 0, e il passaggio per P_4 impone D + E + F = 0. Infine, il passaggio per P_5 equivale a

$$Dab + Eac + Fbc = 0$$

da cui, usando D + E + F = 0, segue che (a meno di una costante moltiplicativa non nulla, che non cambia l'equazione della conica) si ha

$$D = c(a - b), E = b(c - a), F = a(b - c).$$

C'è quindi esattamente una conica che passa per P_1, \ldots, P_5 , e ha equazione

$$c(a-b)x_0x_1 + b(c-a)x_0x_2 + a(b-c)x_1x_2 = 0$$

(si noti che l'equazione è non banale, anzi tutti i coefficienti sono non nulli, grazie alle condizioni su a, b, c trovate in precedenza).

Per verificare che la conica trovata è non degenere basta calcolare il determinante della matrice associata

$$\begin{pmatrix} 0 & \frac{c(a-b)}{2} & \frac{b(c-a)}{2} \\ \frac{c(a-b)}{2} & 0 & \frac{a(b-c)}{2} \\ \frac{b(c-a)}{2} & \frac{a(b-c)}{2} & 0 \end{pmatrix}$$

(come sempre quando si parla di coniche supponiamo che char $\mathbb{K} \neq 2$), che a meno di una costante non nulla risulta essere abc(a-b)(a-c)(b-c), che è non nullo per quanto visto in precedenza.

(Alternativamente, se per assurdo la conica trovata fosse degenere, per quanto visto a lezione sarebbe riducibile, quindi il suo supporto sarebbe l'unione di due rette. Questo però non è possibile, dato che implicherebbe che almeno tre dei punti P_1, \ldots, P_5 sono allineati.)

Se i punti non sono in posizione generale, ci sono sempre coniche degeneri che passano per P_1, \ldots, P_5 . Se ad esempio P_1, P_2, P_3 sono allineati su una retta r, la conica $r+L(P_4, P_5)$ è una di queste (e se P_4 e P_5 non stanno su r, questa conica è effettivamente è l'unica che passa per i punti dati). Si può osservare però che non c'è nessuna conica non degenere che passa per P_1, \ldots, P_5 . Infatti, supponiamo che \mathcal{C} sia una conica passante per P_1, \ldots, P_5 e sia r una retta che contiene almeno tre dei punti P_1, \ldots, P_5 . L'insieme $V(\mathcal{C}) \cap r$ è allora costituito da almeno tre punti. Usando il Teorema di Bézout questo implica che r è una componente di \mathcal{C} , che quindi è degenere.

14. (Teorema di Pappo) Sia $\mathbb{P}(V)$ un piano proiettivo e siano A_1, \ldots, A_6 punti distinti tali che le rette $L(A_1, A_2), L(A_2, A_3), \ldots, L(A_6, A_1)$ siano distinte. Si consideri l'esagono di $\mathbb{P}(V)$ di vertici A_1, \ldots, A_6 , e si supponga che esistano due rette distinte r e s tali che $A_1, A_3, A_5 \in r$, $A_2, A_4, A_6 \in s$ e che $O = r \cap s$ sia distinto dagli A_i . Si dimostri

che i punti di intersezione dei lati opposti dell'esagono, cioè $P_1 = L(A_1, A_2) \cap L(A_4, A_5)$, $P_2 = L(A_2, A_3) \cap L(A_5, A_6)$ e $P_3 = L(A_3, A_4) \cap L(A_6, A_1)$, sono allineati.

Soluzione. Per ipotesi $r = L(A_1, A_3)$ e $s = L(A_2, A_4)$. Poiché r e s sono distinte e il punto $O = r \cap s$ non è un vertice dell'esagono, i punti A_1, A_2, A_3, A_4 sono un riferimento proiettivo. Nel corrispondente sistema di coordinate omogenee di $\mathbb{P}(V)$ la retta r ha equazione $x_1 = 0$, la retta s ha equazione $x_0 - x_2 = 0$ e il punto O ha coordinate [1,0,1]. Il punto A_5 sta sulla retta r ed è distinto da O, da A_1 e da A_2 , quindi ha coordinate [1,0,a], dove $a \in \mathbb{K} \setminus \{0,1\}$. Analogamente, il punto A_6 ha coordinate [1,b,1], con $b \in \mathbb{K} \setminus \{0,1\}$. La retta $L(A_1,A_2)$ ha equazione $x_2 = 0$ e la retta $L(A_4,A_5)$ ha equazione $ax_0 + (1-a)x_1 - x_2 = 0$, quindi il punto $P_1 = L(A_1,A_2) \cap L(A_4,A_5)$ ha coordinate [a-1,a,0]. Allo stesso modo si verifica che P_2 ha coordinate [0,b,1-a] e P_3 ha coordinate [b,b,1]. I punti P_1,P_2 e P_3 sono allineati, dato che

$$\det \begin{pmatrix} a-1 & a & 0 \\ 0 & b & 1-a \\ b & b & 1 \end{pmatrix} = 0.$$

15. Sia \mathcal{C} una curva proiettiva in $\mathbb{P}^2(\mathbb{C})$.

- (1) Si mostri che, se \mathcal{C} è irriducibile, allora ha un numero finito di punti singolari.
- (2) Si mostri che \mathcal{C} è ridotta se e solo se ha un numero finito di punti singolari.

Soluzione. (1) Notiamo preliminariamente che se \mathcal{C} ha grado 1, cioè è una retta, allora non ha nessun punto singolare. Supponiamo dunque che \mathcal{C} abbia grado $d \geq 2$, e sia $F \in \mathbb{C}[x_0, x_1, x_2]$ un'equazione di C. Visto che $F \neq 0$ (e visto che siamo in caratteristica 0), dalla formula di Eulero segue che $F_{x_i} \neq 0$ per almeno un $i \in \{0, 1, 2\}$. Inoltre il polinomio $F_{x_i} = 0$ è omogeneo, di grado $d - 1 \geq 1$.

Sia \mathcal{D} la curva di equazione $F_{x_i} = 0$. Allora i punti singolari di \mathcal{C} sono (in particolare) contenuti nell'intersezione $V(\mathcal{C}) \cap V(\mathcal{D})$. Se per assurdo \mathcal{C} avesse un numero infinito di punti singolari, allora l'intesezione $V(\mathcal{C}) \cap V(\mathcal{D})$ avrebbe infiniti punti. Per il Teorema di Bézout seguirebbe che \mathcal{C} e \mathcal{D} avrebbero una componente irriducibile in comune. Essendo \mathcal{C} irriducibile, questa componente irriducibile dovrebbe essere necessariamente \mathcal{C} stessa. Ora basta notare che \mathcal{C} non può essere componente irriducibile di \mathcal{D} , visto che \mathcal{D} ha grado strettamente minore di quello di \mathcal{C} . Questo mostra che $V(\mathcal{C}) \cap V(\mathcal{D})$ ha un numero finito di punti, e quindi anche i punti singolari di \mathcal{C} sono in numero finito.

(2) Mostriamo prima che se \mathcal{C} non è ridotta, allora ha infiniti punti singolari.

Sia $F \in \mathbb{C}[x_0, x_1, x_2]$ un'equazione di \mathcal{C} , e supponiamo $F = G^2 \cdot H$ dove $G \in \mathbb{C}[x_0, x_1, x_2]$ è omogeneo, di grado $d \geq 1$. Sia \mathcal{D} la curva proiettiva di equazione G = 0. Per l'Esercizio 10, l'insieme $V(\mathcal{D})$ è infinito. Mostriamo che ogni $P \in V(\mathcal{D}) \subseteq V(\mathcal{C})$ è punto singolare di \mathcal{C} .

Per questo basta mostrare che per ogni $i \in \{0, 1, 2\}$ si ha $F_{x_i}(P) = 0$. Ma infatti, derivando $F = G^2 \cdot H$ rispetto alla variabile x_i , otteniamo

$$F_{x_i} = 2G \cdot G_{x_i} \cdot H + G^2 \cdot H_{x_i},$$

e dunque

$$F_{x_i}(P) = 2G(P)G_{x_i}(P)H(P) + G(P)^2H_{x_i}(P) = G(P)\Big(2G_{x_i}(P)H(P) + G(P)H_{x_i}(P)\Big) = 0,$$

dato che G(P) = 0 (in quanto $P \in V(\mathcal{D})$). (In alternativa, si può notare che, come visto a lezione il giorno 15/10/2020, poiché $\mathcal{C} = \mathcal{D} + \mathcal{D} + \mathcal{C}'$, dove $\mathcal{C}' = [H]$, per ogni $P \in V(\mathcal{D})$ si ha $m_P(\mathcal{C}) = m_p(\mathcal{D}) + m_p(\mathcal{D}) + m_p(\mathcal{C}') \ge 1 + 1 + m_p(\mathcal{C}') \ge 2$, per cui P è singolare per \mathcal{C}).

Viceversa, mostriamo che se \mathcal{C} è ridotta, allora ha un numero finito di punti singolari. Sia $F \in \mathbb{C}[x_0, x_1, x_2]$ un'equazione di \mathcal{C} , e scriviamo $F = \prod_{i=1}^k F_i$, dove $F_i \in \mathbb{C}[x_0, x_1, x_2]$ sono omogenei, irriducibili, di grado positivo e a due a due coprimi. Sia \mathcal{C}_i la curva proiettiva di equazione $F_i = 0$, cosicché $\mathcal{C} = \mathcal{C}_1 + \cdots + \mathcal{C}_k$.

Nella lezione del 15/10/2020 si è visto che un punto P è singolare per $\mathcal{D} + \mathcal{D}'$ se e solo se è singolare per \mathcal{D} , oppure è singolare per \mathcal{D}' , oppure sta in $V(\mathcal{D}) \cap V(\mathcal{D}')$. Una facile induzione mostra quindi che, con la notazione stabilita sopra, P è singolare per $\mathcal{C} = \mathcal{C}_1 + \cdots + \mathcal{C}_k$ se e solo se è singolare per una delle componenti \mathcal{C}_i , oppure sta in una delle intersezioni $V(\mathcal{C}_i) \cap V(\mathcal{C}_j)$ con $i \neq j$. Ora, per ogni $i \in \{1, \ldots, k\}$ i punti singolari di \mathcal{C}_i sono in numero finito grazie al punto (1) del presente esercizio, e visto che le curve \mathcal{C}_i sono irriducibili e i polinomi F_i sono a due a due coprimi, dal Teorema di Bézout segue che tutte le intersezioni $V(\mathcal{C}_i) \cap V(\mathcal{C}_j)$ per $i \neq j$ sono finite. Per quanto detto, concludiamo che \mathcal{C} ha un numero finito di punti singolari.

16. Si mostri che una cubica proiettiva con due punti singolari distinti è necessariamente riducibile.

Soluzione. Supponiamo che $P_1, P_2 \in V(\mathcal{C})$ siano punti singolari. Allora per definizione di punto singolare abbiamo $m_{P_i}(\mathcal{C}) \geq 2$ per i = 1, 2. Inoltre, per definizione di molteplicità di un punto in una curva, se r è la retta $L(P_1, P_2)$ abbiamo $I(\mathcal{C}, r, P_i) \geq m_{P_i}(\mathcal{C}) \geq 2$ per i = 1, 2.

Ora, se r non fosse componente di \mathcal{C} , avremmo $\sum_{P \in V(\mathcal{C}) \cap r} I(\mathcal{C}, r, P) \leq 3$. Ma questa somma è almeno $I(\mathcal{C}, r, P_1) + I(\mathcal{C}, r, P_2) \geq 2 + 2 = 4$ per quanto visto. Dunque r deve essere una componente di \mathcal{C} , che quindi è riducibile.

17. Sia \mathcal{C} la curva proiettiva di $\mathbb{P}^2(\mathbb{C})$ definita dall'equazione

$$x_0 x_2^2 - x_1^3 + x_0 x_1^2 + 5x_0^2 x_1 - 5x_0^3.$$

- (1) Si mostri che \mathcal{C} è liscia.
- (2) Si determinino i punti $P \in V(\mathcal{C})$ per cui la tangente a \mathcal{C} in P passi per il punto Q = [0, 1, 0].

Soluzione. (1) Supponiamo che (x_0, x_1, x_2) risolva il sistema

$$\begin{cases}
F_{x_0} = x_2^2 + x_1^2 + 10x_0x_1 - 15x_0^2 = 0 \\
F_{x_1} = (x_0 + x_1)(5x_0 - 3x_1) = 0 \\
F_{x_2} = 2x_0x_2 = 0
\end{cases}$$

Da $F_{x_2} = 0$ si deduce che $x_0 = 0$ o $x_2 = 0$. Nel primo caso, da $F_{x_1} = 0$ si deduce $x_1 = 0$, per cui $F_{x_0} = 0$ permette di concludere che anche $x_2 = 0$. Nel secondo caso, da $F_{x_1} = 0$ si deduce $x_0 = -x_1$ oppure $x_1 = (5/3)x_0$. Insieme alla condizione $x_2 = 0$, ciascuna di queste uguaglianze, se sostituita in $F_{x_0} = 0$, implica $x_0 = x_1 = 0$. In ogni caso abbiamo mostrato $x_0 = x_1 = x_2 = 0$, per cui \mathcal{C} è non singolare.

(2) La tangente a \mathcal{C} nel punto $[y_0, y_1, y_2]$ ha equazione

$$F_{x_0}(y_0, y_1, y_2)x_0 + F_{x_1}(y_0, y_1, y_2)x_1 + F_{x_2}(y_0, y_1, y_2)x_2 = 0,$$

e pertanto contiene Q se e solo se $F_{x_1}(y_0, y_1, y_2) = 0$. Ne segue che tutti e soli i punti di $V(\mathcal{C})$ la cui tangente contiene Q sono determinati dalle soluzioni del sistema

$$\begin{cases}
F(y_0, y_1, y_2) = y_0 y_2^2 - y_1^3 + y_0 y_1^2 + 5y_0^2 y_1 - 5y_0^3 = 0 \\
F_{x_1}(y_0, y_1, y_2) = (y_0 + y_1)(5y_0 - 3y_1) = 0
\end{cases}$$

che è soddisfatto dai punti di coordinate $[0,0,1], [1,-1,2\sqrt{2}], [1,-1,-2\sqrt{2}], [3\sqrt{3},5\sqrt{3},2i\sqrt{10}], [3\sqrt{3},5\sqrt{3},-2i\sqrt{10}].$

- 18. Sia \mathcal{C} la curva di \mathbb{C}^2 di equazione $f(x,y)=xy^2-y^4+x^3-2x^2y=0$. Si determinino:
 - (1) I punti impropri e gli asintoti di C.
- (2) I punti singolari di \mathcal{C} , con le loro molteplicità e le loro tangenti principali.
- (3) L'equazione della tangente a \mathcal{C} nel punto (4, -4).

Soluzione. (1) Identificando \mathbb{C}^2 con la carta affine U_0 di $\mathbb{P}^2(\mathbb{C})$ attraverso la mappa $j_0: \mathbb{C}^2 \to U_0$ definita da $j_0(x_1, x_2) = [1, x_1, x_2]$, la chiusura proiettiva $\overline{\mathcal{C}}$ di \mathcal{C} ha equazione

$$F(x_0, x_1, x_2) = x_0 x_1 x_2^2 - x_2^4 + x_0 x_1^3 - 2x_0 x_1^2 x_2 = 0$$

Calcolando l'intersezione fra C e la retta $x_0 = 0$, troviamo come unico punto improprio P = [0, 1, 0].

Usando le coordinate affini $u = x_0/x_1$, $v = x_2/x_1$ nella carta affine U_1 , il punto P ha coordinate (0,0) e la parte affine $\overline{\mathcal{C}} \cap U_1$ ha equazione $uv^2 - v^4 + u - 2uv = 0$. Pertanto P è un punto semplice di $\overline{\mathcal{C}}$ e la tangente a $\overline{\mathcal{C}} \cap U_1$ in P ha equazione u = 0. Dunque la tangente a $\overline{\mathcal{C}}$ in P è la retta $x_0 = 0$, e di conseguenza non ci sono asintoti per \mathcal{C} .

(2) Ricordiamo che i punti singolari di \mathcal{C} sono i punti propri che sono singolari per $\overline{\mathcal{C}}$. Per determinare i punti singolari di $\overline{\mathcal{C}}$, basta risolvere il sistema

$$\begin{cases} F_{x_0} = x_1 x_2^2 + x_1^3 - 2x_1^2 x_2 = x_1 (x_2 - x_1)^2 = 0 \\ F_{x_1} = x_0 x_2^2 + 3x_0 x_1^2 - 4x_0 x_1 x_2 = 0 \\ F_{x_2} = 2x_0 x_1 x_2 - 4x_2^3 - 2x_0 x_1^2 = 0 \end{cases}$$

che ha come unica soluzione il punto Q = [1,0,0], che corrisponde a $(0,0) \in \mathbb{C}^2$. Dall'equazione di \mathcal{C} riconosciamo che (0,0) è un punto triplo; poiché la parte omogenea di grado 3 di f(x,y) è $xy^2 + x^3 - 2x^2y = x(x-y)^2$, vediamo che le tangenti principali a \mathcal{C} nell'origine sono le rette x=0 e x-y=0 (quest'ultima con molteplicità 2).

- (3) Poiché $F_{x_0}(1, 4, -4) = 256$, $F_{x_1}(1, 4, -4) = 128$, $F_{x_2}(1, 4, -4) = 192$, l'equazione della retta proiettiva tangente a $\overline{\mathcal{C}}$ in [1, 4, -4] è $4x_0 + 2x_1 + 3x_2 = 0$. Ne segue che la retta tangente a \mathcal{C} in (4, -4) ha equazione 2x + 3y + 4 = 0.
 - 19. Sia \mathcal{C} la curva di $\mathbb{P}^2(\mathbb{C})$ di equazione

$$F(x_0, x_1, x_2) = x_0^2 x_1^2 - x_0 x_1 x_2^2 - 3x_1^4 - x_0^2 x_2^2 - 2x_0 x_1^3 = 0$$

- (1) Si mostri che \mathcal{C} ha 4 punti singolari, e si osservi che tre di essi sono allineati.
- (2) Si dica se \mathcal{C} sia irriducibile.

Soluzione. (1) I punti singolari di \mathcal{C} sono dati dalle soluzioni del sistema

$$\begin{cases} F_{x_0} = 2x_0x_1^2 - x_1x_2^2 - 2x_0x_2^2 - 2x_1^3 = 0 \\ F_{x_1} = 2x_0^2x_1 - x_0x_2^2 - 12x_1^3 - 6x_0x_1^2 = 0 \\ F_{x_2} = -2x_0x_2(x_0 + x_1) = 0 \end{cases}$$

Con facili calcoli si ottiene che i punti singolari di \mathcal{C} sono P = [0, 0, 1], Q = [1, 0, 0], R = [1, -1, 2] e S = [1, -1, -2]. Notiamo che P, R e S giacciono sulla retta r di equazione $x_0 + x_1 = 0$.

(2) Si ha perciò $I(C, r, P) + I(C, r, R) + I(C, r, S) \ge 2 + 2 + 2 = 6 > 4$, per cui la retta r è una componente irriducibile di C. In effetti, se $G(x_0, x_1, x_2) = x_0 x_1^2 - 3x_1^3 - x_0 x_2^2$, si ha $F(x_0, x_1, x_2) = (x_0 + x_1)G(x_0, x_1, x_2)$, e quindi C è riducibile.