Corso di Laurea in Matematica Geometria 2 - Soluzioni I compitino - 29/1/2021

Esercizio 1. Si considerino le seguenti relazioni di equivalenza su \mathbb{R} :

$$x \sim_1 y \qquad \Longleftrightarrow \qquad x = y \text{ oppure } |x| = |y| \ge 1 ,$$

 $x \sim_2 y \qquad \Longleftrightarrow \qquad x = y \text{ oppure } |x| = |y| > 1 ,$

e siano $X_1 = \mathbb{R}/\sim_1, X_2 = \mathbb{R}/\sim_2$.

- (1) [9 punti] Si descriva un sottoinsieme di \mathbb{R}^2 omeomorfo a X_1 (dimostrando che effettivamente lo è).
- (2) [6 punti] Si mostri che X_2 non è omeomorfo ad alcun sottoinsieme di \mathbb{R}^2 .

Soluzione. (1): Sia Y il sottoinsieme di \mathbb{R}^2 dato da

$$Y = S^1 \cup \{(x,0) \in \mathbb{R}^2 \mid x \ge 1\}$$
.

Mostriamo che X_1 è omeomorfo a Y. Sia $f\colon \mathbb{R} \to Y_1$ così definita:

$$f(x) = \begin{cases} (\cos \pi(x-1), \sin \pi(x-1)) & \text{se } |x| \le 1\\ (|x|, 0) & \text{se } |x| \ge 1 \end{cases}.$$

Notiamo che f è ben definita, in quanto per x=1 e per x=-1 i valori definiti dalle due formule sopra descritte coincidono. Inoltre, il ricoprimento $\{[-1,1],(-\infty,-1]\cup[1,+\infty)\}$ di $\mathbb R$ è chiuso e finito, per cui è fondmentale. Poiché f si restringe ad una funzione continua su ogni chiuso del ricoprimento, f è globalmente continua. Notiamo che f(x)=f(y) se e solo se $x\sim_1 y$. Per concludere, è dunque sufficiente mostrare che f è un'identificazione. Poiché è chiaramente surgettiva, basta vedere che f è chiusa.

Osserviamo che Y è localmente compatto: infatti, per ogni $y \in Y$, le palle chiuse (rispetto alla metrica Euclidea) di centro y in Y sono compatte, in quanto chiuse e limitate in \mathbb{R}^2 (stiamo usando che Y è esso stesso un chiuso di \mathbb{R}^2). È dunque sufficiente mostrare che f è propria. D'altronde, se $K \subseteq Y$ è compatto, allora è chiuso e limitato. In particolare, esiste $M \ge 1$ tale che $K \subseteq \{(x,y) \in \mathbb{R}^2 \mid |x| \ge M\}$. Per costruzione, $f^{-1}(K)$ è contenuto in [-M,M], ed è perciò limitato. Inoltre, essendo preimmagine di un chiuso tramite una funzione continua, $f^{-1}(K)$ è anche chiuso. Pertanto $f^{-1}(K)$ è compatto, e ciò conclude la dimostrazione.

(2): Dimostriamo che Y_2 non è T_2 : sia $\pi \colon \mathbb{R} \to Y_2$ la proiezione al quoziente, e siano $y_+ = \pi(1)$ e $y_- = \pi(-1)$. Siano inoltre U_+, U_- intorni aperti di y_+, y_- rispettivamente in Y_2 . Per definizione di topologia quoziente, $\pi^{-1}(U_+)$ è un aperto di \mathbb{R} che contiene 1, per cui esiste $\varepsilon > 0$ tale che $[1, 1 + \varepsilon) \subseteq \pi^{-1}(U_+)$. Analogamente, esiste $\varepsilon' > 0$ tale che $(-1 - \varepsilon', -1] \subseteq \pi^{-1}(U_-)$. Posto $\delta = \min\{\varepsilon, \varepsilon'\}$, abbiamo $\pi(-1 - \delta/2) \in U_-, \pi(1 + \delta/2) \in U_+, \text{ e } \pi(-1 - \delta/2) = \pi(1 + \delta/2)$. Dunque $U_- \cap U_+ \neq \emptyset$. Abbiamo così dimostrato che y_+, y_- non ammettono intorni disgiunti per cui Y non è T_2 . Poiché \mathbb{R}^2 è T_2 ed un sottospazio di uno spazio T_2 è T_2 , ciò implica che Y_2 non è omeomorfo ad un sottospazio di \mathbb{R}^2 .

Esercizio 2. Sia $\mathcal{C} \subseteq \mathbb{P}^2(\mathbb{C})$ una curva liscia, e si consideri la funzione $f_{\mathcal{C}} \colon V(\mathcal{C}) \to \mathbb{P}^2(\mathbb{C})$ che manda $P \in V(\mathcal{C})$ nel punto $[a_0, a_1, a_2] \in \mathbb{P}^2(\mathbb{C})$, dove a_0, a_1, a_2 sono coefficienti di un'equazione della retta tangente a \mathcal{C} in P, nella forma $a_0x_0 + a_1x_1 + a_2x_2 = 0$.

(1) [2 punti] Si mostri che $f_{\mathcal{C}}$ è ben definita.

- (2) [4 punti] Si mostri che se \mathcal{C} è una conica liscia di equazione $ax_0^2 + bx_1^2 + cx_2^2 = 0$ con $a, b, c \in \mathbb{C}$, allora l'immagine di $f_{\mathcal{C}}$ è di nuovo una conica in $\mathbb{P}^2(\mathbb{C})$, e se ne esibisca una equazione.
- (3) [4 punti] Si mostri che se $\mathcal C$ è una cubica liscia, allora $f_{\mathcal C}$ è iniettiva.
- (4) [5 punti] Sia \mathcal{C} la curva in $\mathbb{P}^2(\mathbb{C})$ di equazione $x_0x_2^2 x_1^3 = 0$, e si consideri

$$f_{\mathcal{C}} \colon V(\mathcal{C}) \setminus \operatorname{Sing}(\mathcal{C}) \to \mathbb{P}^2(\mathbb{C})$$

definita come sopra, dove $Sing(\mathcal{C})$ denota l'insieme dei punti singolari di \mathcal{C} .

Si mostri, esibendone una equazione, che esiste una curva \mathcal{D} in $\mathbb{P}^2(\mathbb{C})$ tale per cui $\operatorname{Im}(f_{\mathcal{C}}) \subseteq V(\mathcal{D})$.

Soluzione.

Ricordiamo che se $g \in \mathbb{C}[x_0, x_1, x_2]$ è un'equazione di \mathcal{C} , e $P \in V(\mathcal{C})$ è un punto liscio, allora un'equazione della retta tangente a \mathcal{C} in P è $g_{x_0}(P)x_0+g_{x_1}(P)x_1+g_{x_2}(P)x_2=0$, quindi abbiamo $f_{\mathcal{C}}(P)=[g_{x_0}(P),g_{x_1}(P),g_{x_2}(P)]\in \mathbb{P}^2(\mathbb{C})$.

- (1) La funzione $f_{\mathcal{C}}$ è ben definita perché, essendo \mathcal{C} una curva liscia, in ogni punto P di $V(\mathcal{C})$ è ben definita la retta tangente a \mathcal{C} in P, e se $a_0x_0 + a_1x_1 + a_2x_2 = 0$ e $b_0x_0 + b_1x_1 + b_2x_2 = 0$ sono due equazioni della stessa retta, allora i coefficienti sono proporzionali, quindi abbiamo $[a_0, a_1, a_2] = [b_0, b_1, b_2]$ in $\mathbb{P}^2(\mathbb{C})$.
- (2) Supponiamo che \mathcal{C} sia la conica liscia di equazione $g(x_0, x_1, x_2) = ax_0^2 + bx_1^2 + cx_2^2 = 0$ con $a, b, c \in \mathbb{C}$. Abbiamo $g_{x_0} = 2ax_0, g_{x_1} = 2bx_1, g_{x_2} = 2cx_2$, quindi $f_{\mathcal{C}}(P) = [2ax_0, 2bx_1, 2cx_2] = [ax_0, bx_1, cx_2] \in \mathbb{P}^2(\mathbb{C})$. Notiamo inoltre che la liscezza di \mathcal{C} assicura che a, b, c sono tutti diversi da zero (se almeno uno è zero, la conica è riducibile, quindi singolare). Se ora $[y_0, y_1, y_2]$ è un punto nell'immagine di $f_{\mathcal{C}}$, abbiamo

$$y_0 = \lambda a x_0$$
, $y_1 = \lambda b x_1$, $y_2 = \lambda c x_2$,

per un qualche $[x_0, x_1, x_2] \in V(\mathcal{C})$ e $\lambda \in \mathbb{C}^{\times}$, dunque (visto che $abc \neq 0$) ricaviamo $x_0 = y_0/(\lambda a), x_1 = y_1/(\lambda b), x_2 = y_2/(\lambda c)$. Sostituendo nell'equazione di \mathcal{C} troviamo $y_0^2/a + y_1^2/b + y_2^2/c = 0$.

Mostriamo che in effetti l'immagine di $f_{\mathcal{C}}$ è costituita esattamente dai punti $[y_0, y_1, y_2] \in \mathbb{P}^2(\mathbb{C})$ tali che $y_0^2/a + y_1^2/b + y_2^2/c = 0$, ed è quindi il supporto di una conica. Il ragionamento appena fatto mostra che se $[y_0, y_1, y_2] \in \text{Im}(f_{\mathcal{C}})$, allora l'equazione è soddisfatta. Viceversa, supponiamo che $[y_0, y_1, y_2]$ sia tale che $y_0^2/a + y_1^2/b + y_2^2/c = 0$, e poniamo $x_0 = y_0/a, x_1 = y_1/b, x_2 = y_2/c$. Allora abbiamo $ax_0^2 + bx_1^2 + cx_2^2 = y_0^2/a + y_1^2/b + y_2^2/c = 0$, dunque $[x_0, x_1, x_2]$ sta in $V(\mathcal{C})$, e abbiamo $f_{\mathcal{C}}([x_0, x_1, x_2]) = [y_0, y_1, y_2]$, il che mostra che $[y_0, y_1, y_2]$ è nell'immagine di $f_{\mathcal{C}}$.

- (3) Se \mathcal{C} è una cubica liscia, supponiamo per assurdo di avere $P,Q \in V(\mathcal{C})$ distinti e tali che $f_{\mathcal{C}}(P) = f_{\mathcal{C}}(Q)$, il che significa che la retta tangente a \mathcal{C} in P coincide con la retta tangente a \mathcal{C} in Q. Sia ℓ questa retta. Abbiamo dunque $I(\mathcal{C},\ell,P) \geq 2$ e $I(\mathcal{C},\ell,Q) \geq 2$, da cui $\sum_{R \in V(\mathcal{C}) \cap \ell} I(\mathcal{C},\ell,R) \geq 2+2=4>3=\deg \mathcal{C}$. Per quanto visto a lezione, ciò implica che ℓ è una componente di \mathcal{C} , per cui \mathcal{C} è riducibile. Tuttavia, abbiamo dimostrato che una curva proiettiva complessa liscia è irriducibile. Ciò fornisce la contraddizione richiesta, per cui $f_{\mathcal{C}}$ è iniettiva.
- (4) Se $g(x_0, x_1, x_2) = x_0x_2^2 x_1^3$, abbiamo $g_{x_0} = x_2^2$, $g_{x_1} = -3x_1^2$, $g_{x_2} = 2x_0x_2$. Come nella soluzione del punto (2), se $[y_0, y_1, y_2]$ è un punto nell'immagine di $f_{\mathcal{C}}$, abbiamo $y_0 = \lambda x_2^2$, $y_1 = -3\lambda x_1^2$, $y_2 = 2\lambda x_0x_2$ per qualche $[x_0, x_1, x_2] \in V(\mathcal{C})$ (cioè con $x_0x_2^2 = x_1^3$) e $\lambda \in \mathbb{C}^{\times}$. Segue che

$$y_1^3 = -27\lambda^3 x_1^6 = -27\lambda^3 x_0^2 x_2^4 = -\frac{27}{4}(\lambda x_2^2)(2\lambda x_0 x_2)^2 = -\frac{27}{4}y_0 y_2^2.$$

Questo mostra che l'immagine di $f_{\mathcal{C}}$ è contenuta nel supporto della curva \mathcal{D} di $\mathbb{P}^2(\mathbb{C})$ di equazione $y_1^3 = -\frac{27}{4}y_0y_2^2$ (dove $[y_0, y_1, y_2]$ sono le coordinate omogenee di $\mathbb{P}^2(\mathbb{C})$).

Esercizio 3. [15 punti] Siano X, Y spazi topologici, e $f: X \to Y$ una funzione continua chiusa, e tale che per ogni $y \in Y$ il sottospazio $f^{-1}(y) \subseteq X$ è compatto. Si dimostri che f è propria.

(Può essere utile dimostrare preliminarmente che, per ogni $y \in Y$, se A è un aperto di X tale che $f^{-1}(y) \subseteq A$, allora esiste un aperto U di Y tale che $y \in U$ e $f^{-1}(U) \subseteq A$).

Soluzione. Cominciamo con il dimostrare l'enunciato suggerito alla fine del testo. Poiché A contiene $f^{-1}(y)$, abbiamo $y \notin f(X \setminus A)$. Inoltre, $X \setminus A$ è chiuso, per cui, essendo f chiusa, l'insieme $f(X \setminus A)$ è un chiuso che non contiene g. Poniamo allora $U = Y \setminus f(X \setminus A)$. Per costruzione, U è un aperto che contiene g. Inoltre,

$$f^{-1}(U) = f^{-1}(Y \setminus f(X \setminus A)) = X \setminus f^{-1}(f(X \setminus A)) \subseteq X \setminus (X \setminus A) = A$$

(in quanto $f^{-1}(f(C)) \supseteq C$ per ogni $C \subseteq X$).

Sia ora $K \subseteq Y$ compatto, e dimostriamo che $f^{-1}(K)$ è compatto. Sia $\mathcal{U} = \{U_i\}_{i \in I}$ una famiglia di aperti di X tale che $f^{-1}(K) \subseteq \bigcup_{i \in I} U_i$. Per ogni $y \in Y$, poniamo $F_y = f^{-1}(y) \subseteq f^{-1}(K)$. Per ipotesi, F_y è compatto, per cui esiste un sottoinsieme finito $I_y \subseteq I$ tale che $F_y \subseteq \bigcup_{i \in I_y} U_i := A_y$. Per quanto provato sopra, esiste un aperto U_y di Y tale che $y \in U_y$ e $f^{-1}(U_y) \subseteq A_y$. L'insieme $\{U_y\}_{y \in K}$ è una famiglia di aperti di Y la cui unione contiene K. Poiché K è compatto, esistono $y_1, \ldots, y_n \in Y$ tali che $K \subseteq \bigcup_{i=1}^n U_{y_i}$. Dunque

$$f^{-1}(K) \subseteq f^{-1}\left(\bigcup_{j=1}^n U_{y_j}\right) = \bigcup_{j=1}^n f^{-1}(U_{y_j}) \subseteq \bigcup_{j=1}^n A_{y_j} = \bigcup_{j=1}^n \bigcup_{i \in I_{y_j}} U_i$$
.

Abbiamo estratto da \mathcal{U} un sottoricoprimento finito di $f^{-1}(K)$, il che conclude la dimostrazione del fatto che $f^{-1}(K)$ è compatto.

Soluzione alternativa. Sia $K \subseteq Y$ un compatto. Vogliamo mostrare che $f^{-1}(K) \subseteq X$ è compatto. Poniamo $g = f|_{f^{-1}(K)} \colon f^{-1}(K) \to K$. Questa è una funzione continua, a fibre compatte, ed è anche chiusa: se $C \subseteq f^{-1}(K)$ è chiuso, allora esiste $C' \subseteq X$ chiuso tale che $C = C' \cap f^{-1}(K)$. Ora visto che f è chiusa abbiamo che $f(C') \subseteq Y$ è chiuso, e dunque $f(C') \cap K = g(C)$ è chiuso in K. In altre parole, possiamo supporre che Y sia compatto, e dobbiamo mostrare che X è pure compatto.

A questo scopo, sia $\{C_i\}_{i\in I}$ una famiglia di chiusi di X tali che tutte le intersezioni finite sono non vuote, e mostriamo che $\cap_{i\in I}C_i\neq\emptyset$. Per $J\subseteq I$ finito, indichiamo con $C_J=\cap_{i\in J}C_i$. Tutti i C_J sono chiusi non vuoti, e visto che f è chiusa, anche $f(C_J)\subseteq Y$ è chiuso (non vuoto) per qualsiasi J. Inoltre, se $J_1,\ldots,J_k\subseteq I$ sono sottoinsiemi finiti, abbiamo $f(C_{J_1}\cap\cdots\cap C_{J_k})\subseteq f(C_{J_1})\cap\cdots\cap f(C_{J_K})$, che dunque è non vuoto, essendo $C_{J_1}\cap\cdots\cap C_{J_k}$ ancora un'intersezione finita dei C_i , dunque non vuota.

Per compattezza di Y, segue che $\cap_{\{J\subseteq I \text{ finito}\}} f(C_J) \neq \emptyset$. Sia y un elemento in questa intersezione. Per costruzione, per ogni $J\subseteq I$ finito esiste $x_J\in f^{-1}(y)\cap C_J$ (visto che $y\in f(C_J)$) dunque $f^{-1}(y)\cap C_J=f^{-1}(y)\cap (\cap_{i\in J}C_i)\neq \emptyset$. Segue che i chiusi $D_i=f^{-1}(y)\cap C_i$ di $f^{-1}(y)$ sono non vuoti, e hanno la proprietà che le loro intersezioni finite sono tutte non vuote. Per compattezza di $f^{-1}(y)$ segue che $\cap_{i\in I}D_i\neq\emptyset$, da cui $\cap_{i\in I}C_i\neq\emptyset$ (dato che $\cap_{i\in I}D_i\subseteq\cap_{i\in I}C_i$), come volevamo.