What is this course about

Not approximation theory, mostly. (!)
A few selected advanced topics in linear algebra, close to (some of) the themes of our research group in Pisa.

Themes

- Methods to compute matrix functions;
- Methods to solve some specific matrix equations;
- Applications to control theory.

Movie trailer 1: matrix functions

How to define $f(A)$ for an analytic function f ? You have already seen $\exp (A)=I+A+\frac{A^{2}}{2}+\ldots$

Either via a series expansion or as

$$
f(A)=f\left(V \wedge V^{-1}\right)=V \operatorname{diag}\left(f\left(\lambda_{1}\right), f\left(\lambda_{2}\right), \ldots, f\left(\lambda_{m}\right)\right) V^{-1}
$$

Higher derivatives of f pop up unexpectedly:

$$
f\left(\left[\begin{array}{lll}
0 & 1 & 0 \\
0 & 0 & 1 \\
0 & 0 & 0
\end{array}\right]\right)=\left[\begin{array}{ccc}
f(0) & f^{\prime}(0) & \frac{1}{2} f^{\prime \prime}(0) \\
0 & f(0) & f^{\prime}(0) \\
0 & 0 & f(0)
\end{array}\right]
$$

Techniques to compute them involve matrix decompositions, some approximation theory (replace f with a polynomial or rational function), Cauchy integrals, and some ad-hoc tricks such as $\exp (2 A)=\exp (A)^{2}$.

Movie trailer 2: matrix equations

Algebraic Riccati equations

Find $X \in \mathbb{R}^{n \times n}$ that solves

$$
X C X-A X+X D-B=0
$$

Appears in several applications, e.g., control theory. How to solve it?
(Block) eigenvalue problem in disguise: find $X, \Lambda=C X+D$ s.t.

$$
\left[\begin{array}{ll}
A & B \\
C & D
\end{array}\right]\left[\begin{array}{c}
X \\
I
\end{array}\right]=\left[\begin{array}{c}
X \\
I
\end{array}\right] \Lambda .
$$

Solution (in the generic case): take n of the $2 n$ eigenvalues of that block matrix, and choose within their span

$$
\left[\begin{array}{c}
X \\
I
\end{array}\right]=\left[\begin{array}{llll}
v_{1} & v_{2} & \ldots & v_{n}
\end{array}\right] W .
$$

Movie trailer: matrix sign

Newton for the matrix sign

$$
A_{k+1}=\frac{1}{2}\left(A_{k}+A_{k}^{-1}\right), \quad A_{0}=A
$$

If

$$
A_{k}=V \operatorname{diag}\left(\lambda_{1}, \lambda_{2}, \ldots, \lambda_{m}\right) V^{-1}
$$

then

$$
A_{k+1}=V \operatorname{diag}\left(\frac{\lambda_{1}+\lambda_{1}^{-1}}{2}, \frac{\lambda_{2}+\lambda_{2}^{-1}}{2}, \ldots, \frac{\lambda_{m}+\lambda_{m}^{-1}}{2}\right) V^{-1}
$$

Each eigenvalue evolves independently, converging to one of the two fixed points ± 1.

Splits the spectrum of A in two: $\operatorname{ker}\left(A_{\infty}-I\right)$ and $\operatorname{ker}\left(A_{\infty}+I\right)$.

- Can be used to find eigenvalues recursively, as a "matrix product-heavy" algorithm. . .
- ... and to solve algebraic Riccati equations.

Course features

Prereqs

- Numerical analysis
- Scientific computing

Synergy with other courses from the same area, e.g., numerical methods for Markov chains.

Not a 'general' course on numerical analysis / linear algebra.

Course features

Prereqs

- Numerical analysis
- Scientific computing

Synergy with other courses from the same area, e.g., numerical methods for Markov chains.

Not a 'general' course on numerical analysis / linear algebra.

Course format

- Frontal lectures with various Matlab examples.
- Tablet notes produced during the lectures + slides available for later.
- Possibly (if manageable) each student will give a short mini-lecture on a specific topic during the course.

Studying

Books

- Higham Functions of Matrices.
- Datta, Numerical Methods for Linear Control Theory.
\square
Exam
Seminar on a research paper on these topics (typically showing some theory + implementing numerical examples).
- 42 hours, 6 credits.
- 2nd semester (Spring)

I hope to see you in a few months!

Studying

Books

- Higham Functions of Matrices.
- Datta, Numerical Methods for Linear Control Theory.

Exam

Seminar on a research paper on these topics (typically showing some theory + implementing numerical examples).

- 42 hours, 6 credits.
- 2nd semester (Spring)

I hope to see you in a few months!

Studying

Books

- Higham Functions of Matrices.
- Datta, Numerical Methods for Linear Control Theory.

Exam

Seminar on a research paper on these topics (typically showing some theory + implementing numerical examples).

Details

- 42 hours, 6 credits.
- 2nd semester (Spring).

Studying

Books

- Higham Functions of Matrices.
- Datta, Numerical Methods for Linear Control Theory.

Exam

Seminar on a research paper on these topics (typically showing some theory + implementing numerical examples).

Details

- 42 hours, 6 credits.
- 2nd semester (Spring).

I hope to see you in a few months!
... Questions?

