Polynomials of matrices

What happens to Jordan blocks when we take a scalar polynomial, and apply it to a (square) matrix? E.g.,

$$p(x) = 1 + 3x - 5x^2 \implies p(A) = I + 3A - 5A^2.$$

Lemma

If A = S blkdiag $(J_1, J_2, \dots, J_s)S^{-1}$ is a Jordan form, then p(A) = S blkdiag $(p(J_1), p(J_2), \dots, p(J_s))S^{-1}$, and

$$p(J_i) = egin{bmatrix} p(\lambda_i) & p'(\lambda_i) & \dots & rac{1}{k!}p^{(k)}(\lambda_i) \ p(\lambda_i) & \ddots & dots \ & \ddots & p'(\lambda_i) \ p(\lambda_i) \end{bmatrix}.$$

(Proof: Taylor expansion of p around λ .)

Functions of matrices [Higham book, '08]

We can extend the same definition to arbitrary scalar functions:

Given a function $f:U\subseteq\mathbb{C}\to\mathbb{C}$, we say that f is defined on A if f is defined and differentiable at least $n(\lambda_i)-1$ times on each eigenvalue λ_i of A.

 $(n(\lambda_i) = \text{size of largest Jordan block with eigenvalue } \lambda_i)$

Definition attempt

If A = S blkdiag $(J_1, J_2, \dots, J_s)S^{-1}$ is a Jordan form, then f(A) = S blkdiag $(f(J_1), f(J_2), \dots, f(J_s))S^{-1}$, where

$$f(J_i) = egin{bmatrix} f(\lambda_i) & f'(\lambda_i) & \dots & rac{1}{k!}f^{(k)}(\lambda_i) \ & f(\lambda_i) & \ddots & dots \ & & \ddots & f'(\lambda_i) \ & & f(\lambda_i) \end{bmatrix}.$$

(Reasonable doubt: is it independent of the choice of S?)

Alternate definition: via Hermite interpolation

Definition

$$f(A) = p(A)$$
, where p is a polynomial such that $f(\lambda_i) = p(\lambda_i), f'(\lambda_i) = p'(\lambda_i), \dots, f^{(n(\lambda_i)-1)}(\lambda_i) = p^{(n(\lambda_i)-1)}(\lambda_i)$ for each i .

We may use this as a definition of f(A) (and it does not depend on S).

Obvious from the definitions that it coincides with the previous one.

Remark: if $A \in \mathbb{C}^{m \times m}$ has multiple Jordan blocks with the same eigenvalue, these may be fewer than m conditions.

Remark: be careful when you say "all matrix functions are polynomials", because p depends on A.

Example: square root

$$A = \begin{bmatrix} 4 & 1 & & \\ & 4 & 1 & \\ & & 4 & \\ & & & 0 \end{bmatrix}, \quad f(x) = \sqrt{x}$$

We look for an interpolating polynomial with

$$p(0) = 0, p(4) = 2, p'(4) = f'(4) = \frac{1}{4}, p''(4) = f''(4) = -\frac{1}{32}.$$

I.e.,

$$\begin{bmatrix} 0 & 0 & 0 & 1 \\ 4^3 & 4^2 & 4 & 1 \\ 3 \cdot 4^2 & 2 \cdot 4 & 1 & 0 \\ 6 \cdot 4 & 2 & 0 & 0 \end{bmatrix} \begin{bmatrix} p_3 \\ p_2 \\ p_1 \\ p_0 \end{bmatrix} = \begin{bmatrix} 0 \\ 2 \\ \frac{1}{4} \\ -\frac{1}{32} \end{bmatrix},$$
$$p(x) = \frac{3}{256}x^3 - \frac{5}{32}x^2 + \frac{15}{16}x.$$

Example - continues

$$p(A) = \frac{3}{256}A^3 - \frac{5}{32}A^2 + \frac{15}{16}A = \begin{bmatrix} 2 & \frac{1}{4} & -\frac{1}{64} \\ & 2 & \frac{1}{4} \\ & & 2 \\ & & & 0 \end{bmatrix}.$$

(One can check that
$$f(A)^2 = A$$
.)

Hermite interpolation

A suitable polynomial always exists:

Theorem

Given distinct points x_1, x_2, \ldots, x_n , multiplicities m_1, m_2, \ldots, m_n , there exists a unique polynomial of degree $d < m_1 + m_2 + \cdots + m_n$ such that (for all $i = 1, \ldots, n$)

$$p(x_i) = y_{i,0}, p'(x_i) = y_{i,1}, \ldots, p^{(m_i-1)}(x_i) = y_{i,m_i-1},$$

where the yij are prescribed values.

Proof (sketch)

- ▶ Interpolation conditions \iff square linear system Vp = y, where p is the vector of polynomial coefficients.
- We prove that V has no kernel. If Vz = 0 for a vector z, then the associated polynomial z(x) has roots at x_i of multiplicity m_i . By degree reasons it must be the zero polynomial.

Example – square root

$$A = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}, \quad f(x) = \sqrt{x}$$

does not exist (because f'(0) is not defined).

(Indeed, there is no matrix such that $X^2=A$: every 2×2 nilpotent matrix X has Jordan form equal to A, thus $X^2=0$.)

Example - matrix exponential

$$A = S \begin{bmatrix} -1 & & & \\ & 0 & & \\ & & 1 & 1 \\ & & & 1 \end{bmatrix} S^{-1}, \quad f(x) = \exp(x).$$

$$\exp(A) = S \begin{bmatrix} e^{-1} & & & \\ & 1 & & \\ & & e & e \\ & & & e \end{bmatrix} S^{-1}$$

Can also be obtained as
$$I + A + \frac{1}{2}A^2 + \frac{1}{3!}A^3 + \dots$$

(This is not immediate, for Jordan blocks; we will prove later in more generality that Taylor series 'work'.)

Example – matrix sign

$$A = S \begin{bmatrix} -3 & & & \\ & -2 & & \\ & & 1 & 1 \\ & & & 1 \end{bmatrix} S^{-1}, \quad f(x) = sign(x) = \begin{cases} 1 & \text{Re } x > 0, \\ -1 & \text{Re } x < 0. \end{cases}$$

$$f(A) = S \begin{bmatrix} -1 & & & \\ & -1 & & \\ & & 1 & \\ & & & 1 \end{bmatrix} S^{-1}.$$

Not constant (for general S).

Instead, we can recover stable / unstable invariant subspaces of A as $\ker(f(A) \pm I)$.

If we found a way to compute f(A) without diagonalizing, we could use it to compute eigenvalues via bisection...

Example – complex square root

$$A = \begin{vmatrix} 0 & 1 \\ -1 & 0 \end{vmatrix}, \quad f(x) = \sqrt{x}$$

We can play around with branches: let us say $f(i) = \frac{1}{\sqrt{2}}(1+i)$, $f(-i) = \frac{1}{\sqrt{2}}(1-i)$.

Polynomial: $p(x) = \frac{1}{\sqrt{2}}(1+x)$.

$$p(A) = \frac{1}{\sqrt{2}} \begin{bmatrix} 1 & 1 \\ -1 & 1 \end{bmatrix}.$$

(This is the so-called <u>principal</u> square root – we have chosen the values of $f(\pm i)$ in the right half-plane — other choices are possible).

(We get a non-real square root of A, if we choose non-conjugate values for f(i) and f(-i))

Example - nonprimary square root

With our definition, if we have

$$A = S \begin{bmatrix} 1 & & \\ & 1 & \\ & & 2 \end{bmatrix} S^{-1}, \quad f(x) = \sqrt{x}$$

we cannot get

$$f(A) = S \begin{bmatrix} 1 & & \\ & -1 & \\ & \sqrt{2} \end{bmatrix} S^{-1} :$$

either
$$f(1) = 1$$
, or $f(1) = -1$...

This would also be a solution of $X^2 = A$, though.

Nonprimary matrix functions

If a matrix A has multiple eigenvalues, one could also define a 'square root' by choosing different signs on Jordan blocks with the same eigenvalue: for instance, $\begin{bmatrix} 1 \\ -1 \end{bmatrix}$ as a square root of I_2 (or

also
$$V\begin{bmatrix}1\\-1\end{bmatrix}V^{-1}$$
 for any invertible $V...$).

These are called nonprimary matrix functions (and they are not matrix functions with our definition).

They all satisfy
$$f(A)^2 = A$$
.

These are not polynomials in A.

Some properties

- If the eigenvalues of A are $\lambda_1, \ldots, \lambda_s$, the eigenvalues of f(A) are $f(\lambda_1), \ldots, f(\lambda_s)$. (Remark: geometric multiplicities may increase)
- ▶ f(A)g(A) = g(A)f(A) = (fg)(A) (since they are all polynomials in A). Analogously for sums and compositions.
- ▶ If $f_n o f$ together with 'enough derivatives' (for instance because they are analytic and the convergence is uniform), then $f_n(A) o f(A)$.
- ▶ If a sequence of matrices $A_n \to A$, then $f(A_n) \to f(A)$. Proof: we will see it later.

Cauchy integrals

If f is holomorphic (analytic) on and inside a contour Γ that encloses the eigenvalues of A,

$$f(A) = \frac{1}{2\pi i} \int_{\Gamma} f(z)(zI - A)^{-1} dz.$$

Generalizes the analogous scalar formula (Cauchy's integral formula).

Proof Use a Jordan form $A = VJV^{-1} \in \mathbb{C}^{m \times m}$; we can pull the integral inside each Jordan block. Then,

$$\frac{1}{2\pi i} \int_{\Gamma} f(z)(zI - J)^{-1} dz = \frac{1}{2\pi i} \int_{\Gamma} f(z) \begin{bmatrix} z - \lambda & -1 & & \\ & z - \lambda & -1 & \\ & & \ddots & \ddots \\ & & & z - \lambda \end{bmatrix}^{-1} dz$$

$$2\pi i \int_{\Gamma} \langle \gamma \rangle = \begin{bmatrix} 2\pi i \int_{\Gamma} \langle \gamma \rangle & 2\pi i \int_{\Gamma} \langle \gamma \rangle \\ \frac{1}{2\pi i} \int_{\Gamma} \frac{f(z)}{z - \lambda} dz & \frac{1}{2\pi i} \int_{\Gamma} \frac{f(z)}{(z - \lambda)^{2}} dz & \dots & \frac{1}{2\pi i} \int_{\Gamma} \frac{f(z)}{(z - \lambda)^{n-1}} dz \\ & \ddots & \ddots & \ddots & \vdots \end{bmatrix}$$

$$= \begin{bmatrix} f(\lambda) & f'(\lambda) & \dots & \frac{f^{(n-1)}}{(n-1)!} \\ & \ddots & \ddots & \ddots & \vdots \end{bmatrix}$$

by the scalar version of Cauchy's integral formula (including the version that computes derivatives).

Corollary f(A) is continuous in A (since that integral formula is so).

Continuity

The previous proof works for holomorphic f.

f(A) is continuous in A also in more general settings (as long as there are enough derivatives), but the proof is more complex.

Sketch:

- The coefficients of the interpolating polynomial are continuous in the nodes (not clear at all from our proof!).
- ▶ Take a sequence $A_n \rightarrow A$, and let p_n be interpolating polynomials of f in the eigenvalues of A_n .
- ▶ $||f(A) f(A_n)|| = ||p_n(A_n) p(A)|| \le ||p_n(A_n) p_n(A)|| + ||p_n(A) p(A)||$, and both terms are bounded.

Methods

Matrix functions arise in several areas: solving ODEs (e.g., $\exp A$), matrix analysis (e.g., square roots), physics, . . .

Main methods to compute them:

- Factorizations (eigendecompositions, Schur...),
- Matrix versions of scalar iterations (e.g., Newton on $x^2 = a$),
- Interpolation / approximation,
- Complex integrals + quadrature,
- Arnoldi.