
Polynomials of matrices
What happens to Jordan blocks when we take a scalar polynomial,
and apply it to a (square) matrix? E.g.,

p(x) = 1 + 3x − 5x2 =⇒ p(A) = I + 3A− 5A2.

Lemma
If A = S blkdiag(J1, J2, . . . , Js)S−1 is a Jordan form, then
p(A) = S blkdiag(p(J1), p(J2), . . . , p(Js))S−1, and

p(Ji ) =


p(λi ) p′(λi ) . . . 1

k!p
(k)(λi )

p(λi )
. . . ...
. . . p′(λi )

p(λi )

 .

(Proof: Taylor expansion of p around λ.)



Functions of matrices [Higham book, ’08]

We can extend the same definition to arbitrary scalar functions:
Given a function f : U ⊆ C→ C, we say that f is defined on A if f
is defined and differentiable at least n(λi )− 1 times on each
eigenvalue λi of A.
(n(λi ) = size of largest Jordan block with eigenvalue λi)

Definition attempt
If A = S blkdiag(J1, J2, . . . , Js)S−1 is a Jordan form, then
f (A) = S blkdiag(f (J1), f (J2), . . . , f (Js))S−1, where

f (Ji ) =


f (λi ) f ′(λi ) . . . 1

k! f
(k)(λi )

f (λi )
. . . ...
. . . f ′(λi )

f (λi )

 .

(Reasonable doubt: is it independent of the choice of S?)



Alternate definition: via Hermite interpolation

Definition
f (A) = p(A), where p is a polynomial such that
f (λi ) = p(λi ), f ′(λi ) = p′(λi ), . . . , f (n(λi )−1)(λi ) = p(n(λi )−1)(λi )
for each i .

We may use this as a definition of f (A) (and it does not depend on
S).
Obvious from the definitions that it coincides with the previous
one.

Remark: if A ∈ Cm×m has multiple Jordan blocks with the same
eigenvalue, these may be fewer than m conditions.
Remark: be careful when you say “all matrix functions are
polynomials”, because p depends on A.



Example: square root

A =


4 1

4 1
4

0

 , f (x) =
√

x

We look for an interpolating polynomial with

p(0) = 0, p(4) = 2, p′(4) = f ′(4) = 1
4 , p′′(4) = f ′′(4) = − 1

32 .

I.e., 
0 0 0 1
43 42 4 1

3 · 42 2 · 4 1 0
6 · 4 2 0 0




p3
p2
p1
p0

 =


0
2
1
4
− 1

32

 ,
p(x) = 3

256x3 − 5
32x2 + 15

16x .



Example – continues

p(A) = 3
256A3 − 5

32A2 + 15
16A =


2 1

4 − 1
64

2 1
4
2

0

 .
(One can check that f (A)2 = A.)



Hermite interpolation
A suitable polynomial always exists:

Theorem
Given distinct points x1, x2, . . . , xn, multiplicities m1,m2, . . . ,mn,
there exists a unique polynomial of degree
d < m1 + m2 + · · ·+ mn such that (for all i = 1, . . . , n)

p(xi ) = yi ,0, p′(xi ) = yi ,1, . . . , p(mi−1)(xi ) = yi ,mi−1,

where the yij are prescribed values.

Proof (sketch)
I Interpolation conditions ⇐⇒ square linear system Vp = y ,

where p is the vector of polynomial coefficients.
I We prove that V has no kernel. If Vz = 0 for a vector z , then

the associated polynomial z(x) has roots at xi of multiplicity
mi . By degree reasons it must be the zero polynomial.



Example – square root

A =
[
0 1
0 0

]
, f (x) =

√
x

does not exist (because f ′(0) is not defined).

(Indeed, there is no matrix such that X 2 = A: every 2× 2
nilpotent matrix X has Jordan form equal to A, thus X 2 = 0.)



Example – matrix exponential

A = S


−1

0
1 1

1

 S−1, f (x) = exp(x).

exp(A) = S


e−1

1
e e

e

 S−1

Can also be obtained as I + A + 1
2A2 + 1

3!A
3 + . . .

(This is not immediate, for Jordan blocks; we will prove later in
more generality that Taylor series ‘work’.)



Example – matrix sign

A = S


−3

−2
1 1

1

 S−1, f (x) = sign(x) =
{
1 Re x > 0,
−1 Re x < 0.

f (A) = S


−1

−1
1

1

 S−1.

Not constant (for general S).

Instead, we can recover stable / unstable invariant subspaces of A
as ker(f (A)± I).

If we found a way to compute f (A) without diagonalizing, we
could use it to compute eigenvalues via bisection. . .



Example – complex square root

A =
[
0 1
−1 0

]
, f (x) =

√
x

We can play around with branches: let us say f (i) = 1√
2(1 + i),

f (−i) = 1√
2(1− i).

Polynomial: p(x) = 1√
2(1 + x).

p(A) = 1√
2

[
1 1
−1 1

]
.

(This is the so-called principal square root – we have chosen the
values of f (±i) in the right half-plane — other choices are
possible).

(We get a non-real square root of A, if we choose non-conjugate
values for f (i) and f (−i))



Example – nonprimary square root
With our definition, if we have

A = S

1 1
2

 S−1, f (x) =
√

x

we cannot get

f (A) = S

1 −1 √
2

 S−1 :

either f (1) = 1, or f (1) = −1. . .

This would also be a solution of X 2 = A, though.



Nonprimary matrix functions
If a matrix A has multiple eigenvalues, one could also define a
‘square root’ by choosing different signs on Jordan blocks with the

same eigenvalue: for instance,
[
1
−1

]
as a square root of I2 (or

also V
[
1
−1

]
V−1 for any invertible V . . . ).

These are called nonprimary matrix functions (and they are not
matrix functions with our definition).
They all satisfy f (A)2 = A.
These are not polynomials in A.



Some properties
I If the eigenvalues of A are λ1, . . . , λs , the eigenvalues of f (A)

are f (λ1), . . . , f (λs). (Remark: geometric multiplicities may
increase)

I f (A)g(A) = g(A)f (A) = (fg)(A) (since they are all
polynomials in A). Analogously for sums and compositions.

I If fn → f together with ‘enough derivatives’ (for instance
because they are analytic and the convergence is uniform),
then fn(A)→ f (A).

I If a sequence of matrices An → A, then f (An)→ f (A).
Proof: we will see it later.



Cauchy integrals

If f is holomorphic (analytic) on and inside a contour Γ that
encloses the eigenvalues of A,

f (A) = 1
2πi

∫
Γ

f (z)(zI − A)−1dz .

Generalizes the analogous scalar formula (Cauchy’s integral
formula).

Proof Use a Jordan form A = VJV−1 ∈ Cm×m; we can pull the
integral inside each Jordan block. Then,



1
2πi

∫
Γ

f (z)(zI − J)−1dz = 1
2πi

∫
Γ

f (z)


z − λ −1

z − λ −1
. . . . . .

z − λ


−1

dz

=

 1
2πi

∫
Γ

f (z)
z−λdz 1

2πi
∫

Γ
f (z)

(z−λ)2 dz . . . 1
2πi

∫
Γ

f (z)
(z−λ)n−1 dz

. . . . . . . . .


=

f (λ) f ′(λ) . . . f (n−1)

(n−1)!
. . . . . . . . .


by the scalar version of Cauchy’s integral formula (including the
version that computes derivatives).
Corollary f (A) is continuous in A (since that integral formula is so).



Continuity
The previous proof works for holomorphic f .

f (A) is continuous in A also in more general settings (as long as
there are enough derivatives), but the proof is more complex.

Sketch:
I The coefficients of the interpolating polynomial are

continuous in the nodes (not clear at all from our proof!).
I Take a sequence An → A, and let pn be interpolating

polynomials of f in the eigenvalues of An.
I ‖f (A)− f (An)‖ = ‖pn(An)− p(A)‖ ≤
‖pn(An)− pn(A)‖+ ‖pn(A)− p(A)‖, and both terms are
bounded.



Methods
Matrix functions arise in several areas: solving ODEs (e.g., exp A),
matrix analysis (e.g., square roots), physics, . . .

Main methods to compute them:
I Factorizations (eigendecompositions, Schur. . . ),
I Matrix versions of scalar iterations (e.g., Newton on x2 = a),
I Interpolation / approximation,
I Complex integrals + quadrature,
I Arnoldi.


