Polynomials of matrices

What happens to Jordan blocks when we take a scalar polynomial, and apply it to a (square) matrix? E.g.,

$$
p(x)=1+3 x-5 x^{2} \Longrightarrow p(A)=I+3 A-5 A^{2}
$$

Lemma

If $A=S \operatorname{blkdiag}\left(J_{1}, J_{2}, \ldots, J_{S}\right) S^{-1}$ is a Jordan form, then $p(A)=S \operatorname{blkdiag}\left(p\left(J_{1}\right), p\left(J_{2}\right), \ldots, p\left(J_{S}\right)\right) S^{-1}$, and

$$
p\left(J_{i}\right)=\left[\begin{array}{cccc}
p\left(\lambda_{i}\right) & p^{\prime}\left(\lambda_{i}\right) & \ldots & \frac{1}{k!} p^{(k)}\left(\lambda_{i}\right) \\
& p\left(\lambda_{i}\right) & \ddots & \vdots \\
& & \ddots & p^{\prime}\left(\lambda_{i}\right) \\
& & & p\left(\lambda_{i}\right)
\end{array}\right]
$$

(Proof: Taylor expansion of p around λ.)

Functions of matrices [Higham book, '08]

We can extend the same definition to arbitrary scalar functions:
Given a function $f: U \subseteq \mathbb{C} \rightarrow \mathbb{C}$, we say that f is defined on A if f is defined and differentiable at least $n\left(\lambda_{i}\right)-1$ times on each eigenvalue λ_{i} of A.
$\left(n\left(\lambda_{i}\right)=\right.$ size of largest Jordan block with eigenvalue $\left.\lambda_{i}\right)$

Definition attempt

If $A=S \operatorname{blkdiag}\left(J_{1}, J_{2}, \ldots, J_{S}\right) S^{-1}$ is a Jordan form, then $f(A)=S \operatorname{blkdiag}\left(f\left(J_{1}\right), f\left(J_{2}\right), \ldots, f\left(J_{S}\right)\right) S^{-1}$, where

$$
f\left(J_{i}\right)=\left[\begin{array}{cccc}
f\left(\lambda_{i}\right) & f^{\prime}\left(\lambda_{i}\right) & \ldots & \frac{1}{k!} f^{(k)}\left(\lambda_{i}\right) \\
& f\left(\lambda_{i}\right) & \ddots & \vdots \\
& & \ddots & f^{\prime}\left(\lambda_{i}\right) \\
& & & f\left(\lambda_{i}\right)
\end{array}\right]
$$

(Reasonable doubt: is it independent of the choice of S ?)

Alternate definition: via Hermite interpolation

Definition

$f(A)=p(A)$, where p is a polynomial such that $f\left(\lambda_{i}\right)=p\left(\lambda_{i}\right), f^{\prime}\left(\lambda_{i}\right)=p^{\prime}\left(\lambda_{i}\right), \ldots, f^{\left(n\left(\lambda_{i}\right)-1\right)}\left(\lambda_{i}\right)=p^{\left(n\left(\lambda_{i}\right)-1\right)}\left(\lambda_{i}\right)$ for each i.

We may use this as a definition of $f(A)$ (and it does not depend on $S)$.
Obvious from the definitions that it coincides with the previous one.

Remark: if $A \in \mathbb{C}^{m \times m}$ has multiple Jordan blocks with the same eigenvalue, these may be fewer than m conditions. Remark: be careful when you say "all matrix functions are polynomials", because p depends on A.

Example: square root

$$
A=\left[\begin{array}{cccc}
4 & 1 & & \\
& 4 & 1 & \\
& & 4 & \\
& & & 0
\end{array}\right], \quad f(x)=\sqrt{x}
$$

We look for an interpolating polynomial with

$$
p(0)=0, p(4)=2, p^{\prime}(4)=f^{\prime}(4)=\frac{1}{4}, p^{\prime \prime}(4)=f^{\prime \prime}(4)=-\frac{1}{32} .
$$

I.e.,

$$
\begin{gathered}
{\left[\begin{array}{cccc}
0 & 0 & 0 & 1 \\
4^{3} & 4^{2} & 4 & 1 \\
3 \cdot 4^{2} & 2 \cdot 4 & 1 & 0 \\
6 \cdot 4 & 2 & 0 & 0
\end{array}\right]\left[\begin{array}{l}
p_{3} \\
p_{2} \\
p_{1} \\
p_{0}
\end{array}\right]=\left[\begin{array}{c}
0 \\
2 \\
\frac{1}{4} \\
-\frac{1}{32}
\end{array}\right],} \\
p(x)=\frac{3}{256} x^{3}-\frac{5}{32} x^{2}+\frac{15}{16} x .
\end{gathered}
$$

Example - continues

$$
p(A)=\frac{3}{256} A^{3}-\frac{5}{32} A^{2}+\frac{15}{16} A=\left[\begin{array}{cccc}
2 & \frac{1}{4} & -\frac{1}{64} & \\
& 2 & \frac{1}{4} & \\
& & 2 & \\
& & & 0
\end{array}\right] .
$$

(One can check that $f(A)^{2}=A$.)

Hermite interpolation

A suitable polynomial always exists:

Theorem

Given distinct points $x_{1}, x_{2}, \ldots, x_{n}$, multiplicities $m_{1}, m_{2}, \ldots, m_{n}$, there exists a unique polynomial of degree $d<m_{1}+m_{2}+\cdots+m_{n}$ such that (for all $i=1, \ldots, n$)

$$
p\left(x_{i}\right)=y_{i, 0}, p^{\prime}\left(x_{i}\right)=y_{i, 1}, \ldots, p^{\left(m_{i}-1\right)}\left(x_{i}\right)=y_{i, m_{i}-1}
$$

where the $y_{i j}$ are prescribed values.
Proof (sketch)

- Interpolation conditions \Longleftrightarrow square linear system $V p=y$, where p is the vector of polynomial coefficients.
- We prove that V has no kernel. If $V z=0$ for a vector z, then the associated polynomial $z(x)$ has roots at x_{i} of multiplicity m_{i}. By degree reasons it must be the zero polynomial.

Example - square root

$$
A=\left[\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right], \quad f(x)=\sqrt{x}
$$

does not exist (because $f^{\prime}(0)$ is not defined).
(Indeed, there is no matrix such that $X^{2}=A$: every 2×2
nilpotent matrix X has Jordan form equal to A, thus $X^{2}=0$.)

Example - matrix exponential

$$
\begin{aligned}
A=S\left[\begin{array}{llll}
-1 & & & \\
& 0 & & \\
& & 1 & 1 \\
& & & 1
\end{array}\right] S^{-1}, & f(x)=\exp (x) \\
& \exp (A)=S\left[\begin{array}{llll}
e^{-1} & & & \\
& 1 & & \\
& & e & e \\
& & & e
\end{array}\right] S^{-1}
\end{aligned}
$$

Can also be obtained as $I+A+\frac{1}{2} A^{2}+\frac{1}{3!} A^{3}+\ldots$
(This is not immediate, for Jordan blocks; we will prove later in more generality that Taylor series 'work'.)

Example - matrix sign

$$
\begin{gathered}
A=S\left[\begin{array}{llll}
-3 & & & \\
& -2 & & \\
& & 1 & 1 \\
& & & 1
\end{array}\right] S^{-1}, \quad f(x)=\operatorname{sign}(x)= \begin{cases}1 & \operatorname{Re} x>0 \\
-1 & \operatorname{Re} x<0\end{cases} \\
f(A)=S\left[\begin{array}{llll}
-1 & & & \\
& -1 & & \\
& & 1 & \\
& & & 1
\end{array}\right] S^{-1} .
\end{gathered}
$$

Not constant (for general S).
Instead, we can recover stable / unstable invariant subspaces of A as $\operatorname{ker}(f(A) \pm I)$.

If we found a way to compute $f(A)$ without diagonalizing, we could use it to compute eigenvalues via bisection...

Example - complex square root

$$
A=\left[\begin{array}{cc}
0 & 1 \\
-1 & 0
\end{array}\right], \quad f(x)=\sqrt{x}
$$

We can play around with branches: let us say $f(i)=\frac{1}{\sqrt{2}}(1+i)$, $f(-i)=\frac{1}{\sqrt{2}}(1-i)$.
Polynomial: $p(x)=\frac{1}{\sqrt{2}}(1+x)$.

$$
p(A)=\frac{1}{\sqrt{2}}\left[\begin{array}{cc}
1 & 1 \\
-1 & 1
\end{array}\right]
$$

(This is the so-called principal square root - we have chosen the values of $f(\pm i)$ in the right half-plane - other choices are possible).
(We get a non-real square root of A, if we choose non-conjugate values for $f(i)$ and $f(-i))$

Example - nonprimary square root

With our definition, if we have

$$
A=S\left[\begin{array}{lll}
1 & & \\
& 1 & \\
& & 2
\end{array}\right] S^{-1}, \quad f(x)=\sqrt{x}
$$

we cannot get

$$
f(A)=S\left[\begin{array}{lll}
1 & & \\
& -1 & \\
& & \sqrt{2}
\end{array}\right] S^{-1}
$$

either $f(1)=1$, or $f(1)=-1 \ldots$
This would also be a solution of $X^{2}=A$, though.

Nonprimary matrix functions

If a matrix A has multiple eigenvalues, one could also define a 'square root' by choosing different signs on Jordan blocks with the same eigenvalue: for instance, $\left[\begin{array}{ll}1 & \\ & -1\end{array}\right]$ as a square root of I_{2} (or also $V\left[\begin{array}{ll}1 & \\ & -1\end{array}\right] V^{-1}$ for any invertible $V \ldots$).
These are called nonprimary matrix functions (and they are not matrix functions with our definition).
They all satisfy $f(A)^{2}=A$.
These are not polynomials in A.

Some properties

- If the eigenvalues of A are $\lambda_{1}, \ldots, \lambda_{s}$, the eigenvalues of $f(A)$ are $f\left(\lambda_{1}\right), \ldots, f\left(\lambda_{s}\right)$. (Remark: geometric multiplicities may increase)
- $f(A) g(A)=g(A) f(A)=(f g)(A)$ (since they are all polynomials in A). Analogously for sums and compositions.
- If $f_{n} \rightarrow f$ together with 'enough derivatives' (for instance because they are analytic and the convergence is uniform), then $f_{n}(A) \rightarrow f(A)$.
- If a sequence of matrices $A_{n} \rightarrow A$, then $f\left(A_{n}\right) \rightarrow f(A)$.

Proof: we will see it later.

Cauchy integrals

If f is holomorphic (analytic) on and inside a contour Γ that encloses the eigenvalues of A,

$$
f(A)=\frac{1}{2 \pi i} \int_{\Gamma} f(z)(z I-A)^{-1} d z
$$

Generalizes the analogous scalar formula (Cauchy's integral formula).

Proof Use a Jordan form $A=V J V^{-1} \in \mathbb{C}^{m \times m}$; we can pull the integral inside each Jordan block. Then,

$$
\begin{aligned}
& \frac{1}{2 \pi i} \int_{\Gamma} f(z)(z l-J)^{-1} d z=\frac{1}{2 \pi i} \int_{\Gamma} f(z)\left[\begin{array}{cccc}
z-\lambda & -1 & & \\
& z-\lambda & -1 & \\
& & \ddots & \ddots \\
& & & z-\lambda
\end{array}\right]^{-1} d z \\
& =\left[\begin{array}{cccc}
\frac{1}{2 \pi i} \int_{\Gamma} \frac{f(z)}{z-\lambda} d z & \frac{1}{2 \pi i} \int_{\Gamma} \frac{f(z)}{(z-\lambda)^{2}} d z & \ldots & \frac{1}{2 \pi i} \int_{\Gamma} \frac{f(z)}{(z-\lambda)^{n-1}} d z \\
& \ddots & \ddots
\end{array}\right] \\
& =\left[\begin{array}{cccc}
f(\lambda) & f^{\prime}(\lambda) & \ldots & \frac{f(n-1)}{(n-1)!} \\
\ddots & \ddots & \ddots
\end{array}\right]
\end{aligned}
$$

by the scalar version of Cauchy's integral formula (including the version that computes derivatives).
Corollary $f(A)$ is continuous in A (since that integral formula is so).

Continuity

The previous proof works for holomorphic f.
$f(A)$ is continuous in A also in more general settings (as long as there are enough derivatives), but the proof is more complex.

Sketch:

- The coefficients of the interpolating polynomial are continuous in the nodes (not clear at all from our proof!).
- Take a sequence $A_{n} \rightarrow A$, and let p_{n} be interpolating polynomials of f in the eigenvalues of A_{n}.
- $\left\|f(A)-f\left(A_{n}\right)\right\|=\left\|p_{n}\left(A_{n}\right)-p(A)\right\| \leq$
$\left\|p_{n}\left(A_{n}\right)-p_{n}(A)\right\|+\left\|p_{n}(A)-p(A)\right\|$, and both terms are bounded.

Methods

Matrix functions arise in several areas: solving ODEs (e.g., $\exp A$), matrix analysis (e.g., square roots), physics, ...

Main methods to compute them:

- Factorizations (eigendecompositions, Schur...),
- Matrix versions of scalar iterations (e.g., Newton on $x^{2}=a$),
- Interpolation / approximation,
- Complex integrals + quadrature,
- Arnoldi.

