Vectorization
Goal represent linear functions R™*" — RP*9,

For instance, to deal with problems like the following one.

Sylvester equation

AX —-XB=C
AeCmm C,XeCm™", BeC™".

This must be a mn x mn linear system, right?

Vectorization gives us an explicit way to construct it.



Vectorization: definition
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Vectorization: comments

Column-major order: leftmost index ‘changes more often’. Matches
Fortran, Matlab standard (C/C++ prefer row-major instead).
Converting indices in the matrix into indices in the vector:

(X)ij = (vec X)itmj 0-based,
(X)ij = (vec X)) m(j-1) 1-based.



vec(AXB)

First, we will work out the representation of a simple linear map,
X — AXB (for fixed matrices A, B of compatible dimensions).

If X € R™*" AXB € RP*9, we need the pg x mn matrix that
maps vec X to vec(AXB).

(AXB)p =Y (AX)ni(B)ji = Z ZAh,X,J Bj

J
=[ AmBiy ApBy ... AhmBll‘AhlBZI AnBa ... ApmBa
| AniBni An2Bni ApmBni vec X



Kronecker product: definition

b11A by A

bi2A b A
vec(AXB) = | . _
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Each block is a multiple of A, with coefficient given by the

corresponding entry of BT .

Definition

Xm1 Y Xm?2 Y

so the matrix above is BT @ A.

XlnY

Xmn Y



Properties of Kronecker products

X11Y X12Y XlnY

X®Y: XQ:!_Y X22Y

XmY XmY ... XmnY

> vec AXB = (BT ® A)vec X. (Warning: not B*, if complex).
» (A® B)(C ® D) = (AC ® BD), when dimensions are
compatible. Proof: B(DXCT)AT = (BD)X(AC)".

(A9 B)! =AT @ B'.

orthogonal ® orthogonal = orthogonal.

upper triangular ® upper triangular = upper triangular.

vVvyyvyy

One can “factor out” several decompositions, e.g.,
ARB = (U151 V] )@(U25:V5) = (U1 Us) (510 5:)(Vie Vo)*.

» In particular, [|[A® B|| = ||A||||B]|.




Solvability criterion

Theorem
The Sylvester equation is solvable for all C iff A(A) N A(B) = 0.

AX - XB=C <=
(I A—B" & I,) vec(X) = vec(C).

Schur decompositions of A,BT: A= QaTaQj}, B' = QeTsQ@%.
Then,

h@A=B' @1n=(Qe®Qa)(h®Ta—Te®In)(Qe® Qa)*.

is a Schur decomposition.

What is on the diagonal of [, ® Ta — Tg ® I,?

If A(A) = {A1,..., Am}, A(B) = {11, .-, itn}, then it's
ANl ®@A—=BT @ Im)={\i — ;1 i,j}.



Solution algorithms

The naive algorithm costs O((mn)3). One can get down to
O(m3n?) (full steps of GMRES, for instance.)

Bartels—Stewart algorithm (1972): O(m3 + n?).

Idea: invert factor by factor the decomposition
(ReRQA)(h®@Ta—Teg® Im)(Qe ® Qa)™.

» Solving orthogonal systems <= multiplying by their
transpose, O(m> + n%) using the ® structure.

» Solving upper triangular system <= back-substitution; costs
O(nnz) = O(m3 + n3).



Bartels—Stewart algorithm

A more operational description. ..
Step 1: reduce to a triangular equation.

QaTAQiX —XQeTa Qs =C

TAY —YT5=D, Y =Q;XQgs D= Q;CQs.

Step 2: We can compute each entry Yj;, by using the (/, j)th
equation, as long as we have computed all the entries below and to
the right of Yj;.

8] - ] - [

Step 3: X = Q.YQ}.




Comments

» Works also with the real Schur form: back-sub yields block
equations which are tiny 2 x 2 or 4 x 4 Sylvesters.

» It works also for X + AXB = C and AXB + CXD = E (with
some complications).

» It does not work for three-term equations,
AXB 4+ CXD + EXF = G.



Backward stability

This method is backward stable (as a system of mn linear
equations), i.e., the computed vec(X) solves a linear system close
to (/®A— BT @ I)vec(X) = vec(C).

(Follows from the interpretation as orthogonal transformations +
back-sub.)

However, it is not always backward stable in the sense that X
solves a nearby matrix equation AX - XB=C [Higham '93].

Sketch of proof: backward error given by the minimum-norm
solution of the underdetermined system

B B vecdp L
[XT@1 —1eX ~I] |vecds| = —vec(AX — XB - C).
vecdc

=M

Assume WLOG X diagonal and compute it via the pseudoinverse
M+ = MT(MMT)fl



Comments

Condition number: ratio between
omax(I0A=BT®1) = |I0A-B || < |[IoA|+|BT @l < ||Al|+|B||

and
AZ — ZB
sep(A, B) := omin(l © A— B' ® 1) = min Az = 2Ble
z  |Z|F
(Note that |vec(X)|| = || X]|£.)

We have seen Anin(/ @ A— BT @ ) = Minxen(a),uen(B) 1A — Kl
(minimum difference between their eigenvalues).

If A, B are both normal, this difference is also
sep(A, B) = omin(l @ A — BT ® I). Otherwise, opmin is smaller; no
simple expression for it.



Decoupling eigenvalues

Solving a Sylvester equation means finding

I —X[|A C||I X| |A 0
0o 0 B{|0 /| |0 B|’
Idea Indicates how ‘difficult’ (ill-conditioned) it is to go from

block-triangular to block-diagonal.

Compare also with the scalar case:

Al is similar to A0
0 u 0 u|’

if \# p, but

A1) ot'm'lt)\o
g | s notsimilarto .



Application: reordering Schur forms

In a (complex) Schur form A= QTQ*, the T;; are the eigenvalues
of A.

Problem

Given a Schur form A = QTQ*, compute another Schur form
A= QT Q" that has the eigenvalues in another (different) order.

This can be solved with the help of Sylvester equations.

It is enough to have a method to ‘swap’ two blocks of eigenvalues.



Reordering Schur forms

Let X solve the Sylvester equation AX — XB = C.

Since

o 11[acl[x 1] [B o

I —=X||0 B||Il 0] |0 A|’
the matrix [’ /] does the job, but it is not orthogonal. We replace
it with its QR factor:

A C T T
_ X 17y * T T2

Q@ =ar([7 §]) is such that Q lo B] Q= l 0 sz with
AN(T11) = N(B), A(T22) = AN(A).

Matlab example: computing the stable invariant subspace with
ordschur.



Invariant subspaces

Invariant subspace of a matrix M: any subspace I/ such that
MU CU.

There is a matrix A associated to the linear operator M on the
space U (with basis U;), i.e., MU; = Ui A.

If Av = Av, then M(Uiv) = AUyv, i.e., A(A) C A(M).

Completing a basis U; to one U = [ U1 U2] of C™, we get

A C
-1

MU = .
U mu [0 B]
Invariant subspaces <= block triangular decomposition <=
part of the spectrum/eigenvectors of a matrix.



Examples (stable invariant subspaces)

Idea: invariant subspaces are ‘the span of some eigenvectors’
(usually) or Jordan chains (more generally).
Example 1 span(vy, va, ..., vk) (eigenvectors).

Example 2 Invariant subspaces of i)\ i\] span(e;) and

span(ey, €2).
Example 3 Invariant subspaces of a larger Jordan block:
span(ey, ..., ek) for all k (“beginnings” of Jordan chains).

Example 4: stable invariant subspace: vectors xg s.t.
Iimk_mo AkXO =0

(These give the general case — idea: a Jordan chain of A can
always be extended to one of M.)



Sensitivity of invariant subspaces

If we perturb M to M + &y, how much does an invariant subspace
U1 change?

We can assume U = [ for simplicity (orthogonal change of basis):
A c]

/ . .
lol spans an invariant subspace of M = o Bl

Theorem [Stewart Sun book V.2.2]

A C da Oc
Letl\/l—[0 B] om p s,

If 4(sep(A, B) — a— b)? — d(||C||F + ¢) > 0, then there is a

], a=||0allF and so on.

(unique) X with || X]|F < ZW such that [)I(] spans an

invariant subspace of M + §.



Proof (sketch)

_ [A+64 C+6
> M4 oM = [ AR L]

» Look for a transformation V~Y(M + M)V of the form
V = [} 9] that zeroes out the (2, 1) block.

» Formulate a Riccati equation
X(A+64) — (B+d5)X =6dp — X(C+5C)X.

P See it as a fixed-point problem
Xit1 = T71(0p — Xk(C +8C)Xk)

» Take norms, show that the iteration map sends a ball B(0, p)
(for sufficiently small p) to itself:

IXicer e < T2 + IXel (I C Nl + €))-

> |77 = omin(T) = omin(T) — a — b (from SVD
perturbation results.)



Applications of Sylvester equations

Apart from the ones we have already seen:
> As a step to compute matrix functions.

» Stability of linear dynamical systems.
Lyapunov equations AX + XAT = B, B symmetric.

> As a step to solve more complicated matrix equations
(Newton's method — linearization).

We will re-encounter them later in the course.



