Vectorization

Goal represent linear functions $\mathbb{R}^{m \times n} \rightarrow \mathbb{R}^{p \times q}$.
For instance, to deal with problems like the following one.

Sylvester equation

$$
A X-X B=C
$$

$A \in \mathbb{C}^{m \times m}, C, X \in \mathbb{C}^{m \times n}, B \in \mathbb{C}^{n \times n}$.
This must be a $m n \times m n$ linear system, right?
Vectorization gives us an explicit way to construct it.

Vectorization: definition

Vectorization: comments

Column-major order: leftmost index 'changes more often'. Matches Fortran, Matlab standard (C/C++ prefer row-major instead).
Converting indices in the matrix into indices in the vector:

$$
\begin{array}{rlr}
(X)_{i j} & =(\operatorname{vec} X)_{i+m j} & \text { 0-based } \\
(X)_{i j} & =(\operatorname{vec} X)_{i+m(j-1)} & \text { 1-based }
\end{array}
$$

$\operatorname{vec}(A X B)$

First, we will work out the representation of a simple linear map, $X \mapsto A X B$ (for fixed matrices A, B of compatible dimensions).
If $X \in \mathbb{R}^{m \times n}, A X B \in \mathbb{R}^{p \times q}$, we need the $p q \times m n$ matrix that maps vec X to $\operatorname{vec}(A X B)$.

$$
\begin{aligned}
& (A X B)_{h l}=\sum_{j}(A X)_{h j}(B)_{j l}=\sum_{j} \sum_{i} A_{h i} X_{i j} B_{j l} \\
& =\left[\begin{array}{lllll}
A_{h 1} B_{1 /} & A_{h 2} B_{1 /} & \ldots & \left.A_{h m} B_{1 /} \left\lvert\, \begin{array}{llll}
A_{h 1} B_{2 l} & A_{h 2} B_{2 /} & \ldots & A_{h m} B_{2 \mid} \mid \ldots
\end{array}\right.\right]
\end{array}\right. \\
& \left.\begin{array}{llll}
A_{h 1} B_{n 1} & A_{h 2} B_{n 1} & A_{h m} B_{n 1}
\end{array}\right] \operatorname{vec} X
\end{aligned}
$$

Kronecker product: definition

$$
\operatorname{vec}(A X B)=\left[\begin{array}{cccc}
b_{11} A & b_{21} A & \ldots & b_{n 1} A \\
b_{12} A & b_{22} A & \ldots & b_{n 2} A \\
\vdots & \vdots & \ddots & \vdots \\
b_{1 q} A & b_{2 q} A & \ldots & b_{n q} A
\end{array}\right] \operatorname{vec} X
$$

Each block is a multiple of A, with coefficient given by the corresponding entry of B^{\top}.

Definition

$$
X \otimes Y:=\left[\begin{array}{cccc}
x_{11} Y & x_{12} Y & \ldots & x_{1 n} Y \\
x_{21} Y & x_{22} Y & \ldots & \vdots \\
\vdots & \ddots & \ddots & \vdots \\
x_{m 1} Y & x_{m 2} Y & \ldots & x_{m n} Y
\end{array}\right]
$$

so the matrix above is $B^{\top} \otimes A$.

Properties of Kronecker products

$$
X \otimes Y=\left[\begin{array}{cccc}
x_{11} Y & x_{12} Y & \ldots & x_{1 n} Y \\
x_{21} Y & x_{22} Y & \ldots & \vdots \\
\vdots & \ddots & \ddots & \vdots \\
x_{m 1} Y & x_{m 2} Y & \ldots & x_{m n} Y
\end{array}\right]
$$

- vec $A X B=\left(B^{\top} \otimes A\right)$ vec X. (Warning: not B^{*}, if complex).
- $(A \otimes B)(C \otimes D)=(A C \otimes B D)$, when dimensions are compatible. Proof: $B\left(D X C^{\top}\right) A^{\top}=(B D) X(A C)^{\top}$.
- $(A \otimes B)^{\top}=A^{\top} \otimes B^{\top}$.
- orthogonal \otimes orthogonal $=$ orthogonal.
- upper triangular \otimes upper triangular $=$ upper triangular.
- One can "factor out" several decompositions, e.g.,

$$
A \otimes B=\left(U_{1} S_{1} V_{1}^{*}\right) \otimes\left(U_{2} S_{2} V_{2}^{*}\right)=\left(U_{1} \otimes U_{2}\right)\left(S_{1} \otimes S_{2}\right)\left(V_{1} \otimes V_{2}\right)^{*}
$$

- In particular, $\|A \otimes B\|=\|A\|\|B\|$.

Solvability criterion

Theorem

The Sylvester equation is solvable for all C iff $\Lambda(A) \cap \Lambda(B)=\emptyset$.

$$
A X-X B=C \Longleftrightarrow
$$

$$
\left(I_{n} \otimes A-B^{\top} \otimes I_{m}\right) \operatorname{vec}(X)=\operatorname{vec}(C)
$$

Schur decompositions of $A, B^{\top}: A=Q_{A} T_{A} Q_{A}^{*}, B^{\top}=Q_{B} T_{B} Q_{B}^{*}$. Then,

$$
I_{n} \otimes A-B^{\top} \otimes I_{m}=\left(Q_{B} \otimes Q_{A}\right)\left(I_{n} \otimes T_{A}-T_{B} \otimes I_{m}\right)\left(Q_{B} \otimes Q_{A}\right)^{*}
$$

is a Schur decomposition.
What is on the diagonal of $I_{n} \otimes T_{A}-T_{B} \otimes I_{m}$?
If $\Lambda(A)=\left\{\lambda_{1}, \ldots, \lambda_{m}\right\}, \Lambda(B)=\left\{\mu_{1}, \ldots, \mu_{n}\right\}$, then it's
$\Lambda\left(I_{n} \otimes A-B^{\top} \otimes I_{m}\right)=\left\{\lambda_{i}-\mu_{j}: i, j\right\}$.

Solution algorithms

The naive algorithm costs $O\left((m n)^{3}\right)$. One can get down to $O\left(m^{3} n^{2}\right)$ (full steps of GMRES, for instance.)
Bartels-Stewart algorithm (1972): $O\left(m^{3}+n^{3}\right)$.
Idea: invert factor by factor the decomposition

$$
\left(Q_{B} \otimes Q_{A}\right)\left(I_{n} \otimes T_{A}-T_{B} \otimes I_{m}\right)\left(Q_{B} \otimes Q_{A}\right)^{*}
$$

- Solving orthogonal systems \Longleftrightarrow multiplying by their transpose, $O\left(m^{3}+n^{3}\right)$ using the \otimes structure.
- Solving upper triangular system \Longleftrightarrow back-substitution; costs $O(n n z)=O\left(m^{3}+n^{3}\right)$.

Bartels-Stewart algorithm

A more operational description...
Step 1: reduce to a triangular equation.

$$
\begin{gathered}
Q_{A} T_{A} Q_{A}^{*} X-X \overline{Q_{B}} T_{B}^{\top} Q_{B}^{\top}=C \\
T_{A} Y-Y T_{B}^{*}=D, \quad Y=Q_{A}^{*} X \overline{Q_{B}}, D=Q_{A}^{*} C \overline{Q_{B}}
\end{gathered}
$$

Step 2: We can compute each entry $Y_{i j}$, by using the (i, j) th equation, as long as we have computed all the entries below and to the right of $Y_{i j}$.

Step 3: $X=Q_{a} Y Q_{B}^{\top}$.

Comments

- Works also with the real Schur form: back-sub yields block equations which are tiny 2×2 or 4×4 Sylvesters.
- It works also for $X+A X B=C$ and $A X B+C X D=E$ (with some complications).
- It does not work for three-term equations, $A X B+C X D+E X F=G$.

Backward stability

This method is backward stable (as a system of $m n$ linear equations), i.e., the computed $\operatorname{vec}(\tilde{X})$ solves a linear system close to $\left(I \otimes A-B^{\top} \otimes I\right) \operatorname{vec}(X)=\operatorname{vec}(C)$.
(Follows from the interpretation as orthogonal transformations + back-sub.)
However, it is not always backward stable in the sense that \widetilde{X} solves a nearby matrix equation $\widetilde{A} \widetilde{X}-\widetilde{X} \widetilde{B}=\widetilde{C}$ [Higham '93].

Sketch of proof: backward error given by the minimum-norm solution of the underdetermined system

$$
\underbrace{\left[\begin{array}{lll}
\tilde{X}^{\top} \otimes I & -l \otimes \widetilde{X} & -I
\end{array}\right]}_{=: M}\left[\begin{array}{l}
\operatorname{vec} \delta_{A} \\
\operatorname{vec} \delta_{B} \\
\operatorname{vec} \delta_{C}
\end{array}\right]=-\operatorname{vec}(A \widetilde{X}-\widetilde{X} B-C) .
$$

Assume WLOG \widetilde{X} diagonal and compute it via the pseudoinverse $M^{+}=M^{\top}\left(M M^{\top}\right)^{-1}$.

Comments

Condition number: ratio between
$\sigma_{\max }\left(I \otimes A-B^{\top} \otimes I\right)=\left\|I \otimes A-B^{\top} \otimes I\right\| \leq\|I \otimes A\|+\left\|B^{\top} \otimes I\right\| \leq\|A\|+\|B\|$
and

$$
\operatorname{sep}(A, B):=\sigma_{\min }\left(I \otimes A-B^{\top} \otimes I\right)=\min _{Z} \frac{\|A Z-Z B\|_{F}}{\|Z\|_{F}}
$$

(Note that $\|\operatorname{vec}(X)\|=\|X\|_{F}$.)
We have seen $\lambda_{\text {min }}\left(I \otimes A-B^{\top} \otimes I\right)=\min _{\lambda \in \Lambda(A), \mu \in \Lambda(B)}|\lambda-\mu|$ (minimum difference between their eigenvalues).

If A, B are both normal, this difference is also $\operatorname{sep}(A, B)=\sigma_{\min }\left(I \otimes A-B^{\top} \otimes I\right)$. Otherwise, $\sigma_{\text {min }}$ is smaller; no simple expression for it.

Decoupling eigenvalues

Solving a Sylvester equation means finding

$$
\left[\begin{array}{cc}
I & -X \\
0 & I
\end{array}\right]\left[\begin{array}{cc}
A & C \\
0 & B
\end{array}\right]\left[\begin{array}{cc}
I & X \\
0 & I
\end{array}\right]=\left[\begin{array}{ll}
A & 0 \\
0 & B
\end{array}\right]
$$

Idea Indicates how 'difficult' (ill-conditioned) it is to go from block-triangular to block-diagonal.

Compare also with the scalar case:

$$
\left[\begin{array}{cc}
\lambda & 1 \\
0 & \mu
\end{array}\right] \text { is similar to }\left[\begin{array}{ll}
\lambda & 0 \\
0 & \mu
\end{array}\right]
$$

if $\lambda \neq \mu$, but

$$
\left[\begin{array}{ll}
\lambda & 1 \\
0 & \lambda
\end{array}\right] \text { is not similar to }\left[\begin{array}{cc}
\lambda & 0 \\
0 & \lambda
\end{array}\right] \text {. }
$$

Application: reordering Schur forms

In a (complex) Schur form $A=Q T Q^{*}$, the $T_{i i}$ are the eigenvalues of A.

Problem

Given a Schur form $A=Q T Q^{*}$, compute another Schur form $A=\hat{Q} \hat{T} \hat{Q}^{*}$ that has the eigenvalues in another (different) order.

This can be solved with the help of Sylvester equations.
It is enough to have a method to 'swap' two blocks of eigenvalues.

Reordering Schur forms

Let X solve the Sylvester equation $A X-X B=C$.
Since

$$
\left[\begin{array}{cc}
0 & I \\
I & -X
\end{array}\right]\left[\begin{array}{cc}
A & C \\
0 & B
\end{array}\right]\left[\begin{array}{cc}
X & I \\
I & 0
\end{array}\right]=\left[\begin{array}{ll}
B & 0 \\
0 & A
\end{array}\right]
$$

the matrix $\left[\begin{array}{ll}X & 1 \\ 1 & 0\end{array}\right]$ does the job, but it is not orthogonal. We replace it with its QR factor:
$Q=\operatorname{qr}\left(\left[\begin{array}{ll}x & I \\ I & 0\end{array}\right]\right)$ is such that $Q^{*}\left[\begin{array}{cc}A & C \\ 0 & B\end{array}\right] Q=\left[\begin{array}{cc}T_{11} & T_{12} \\ 0 & T_{22}\end{array}\right]$ with $\Lambda\left(T_{11}\right)=\Lambda(B), \Lambda\left(T_{22}\right)=\Lambda(A)$.
Matlab example: computing the stable invariant subspace with ordschur.

Invariant subspaces

Invariant subspace of a matrix M : any subspace \mathcal{U} such that $M \mathcal{U} \subseteq \mathcal{U}$.

There is a matrix A associated to the linear operator M on the space \mathcal{U} (with basis U_{1}), i.e., $M U_{1}=U_{1} A$.

If $A v=\lambda v$, then $M\left(U_{1} v\right)=\lambda U_{1} v$, i.e., $\Lambda(A) \subseteq \Lambda(M)$.
Completing a basis U_{1} to one $U=\left[\begin{array}{ll}U_{1} & U_{2}\end{array}\right]$ of \mathbb{C}^{m}, we get

$$
U^{-1} M U=\left[\begin{array}{ll}
A & C \\
0 & B
\end{array}\right]
$$

Invariant subspaces \Longleftrightarrow block triangular decomposition \Longleftrightarrow part of the spectrum/eigenvectors of a matrix.

Examples (stable invariant subspaces)

Idea: invariant subspaces are 'the span of some eigenvectors' (usually) or Jordan chains (more generally).
Example $1 \operatorname{span}\left(v_{1}, v_{2}, \ldots, v_{k}\right)$ (eigenvectors).
Example 2 Invariant subspaces of $\left[\begin{array}{ll}\lambda & 1 \\ 0 & \lambda\end{array}\right]: \operatorname{span}\left(e_{1}\right)$ and $\operatorname{span}\left(e_{1}, e_{2}\right)$.
Example 3 Invariant subspaces of a larger Jordan block: span $\left(e_{1}, \ldots, e_{k}\right)$ for all k ("beginnings" of Jordan chains).
Example 4: stable invariant subspace: vectors x_{0} s.t.
$\lim _{k \rightarrow \infty} A^{k} x_{0}=0$
(These give the general case - idea: a Jordan chain of A can always be extended to one of M.)

Sensitivity of invariant subspaces

If we perturb M to $M+\delta_{M}$, how much does an invariant subspace U_{1} change?

We can assume $U=I$ for simplicity (orthogonal change of basis):
$\left[\begin{array}{l}I \\ 0\end{array}\right]$ spans an invariant subspace of $M=\left[\begin{array}{ll}A & C \\ 0 & B\end{array}\right]$.
Theorem [Stewart Sun book V.2.2]
Let $M=\left[\begin{array}{cc}A & C \\ 0 & B\end{array}\right], \delta_{M}=\left[\begin{array}{cc}\delta_{A} & \delta_{C} \\ \delta_{D} & \delta_{B}\end{array}\right], a=\left\|\delta_{A}\right\|_{F}$ and so on.
If $4(\operatorname{sep}(A, B)-a-b)^{2}-d\left(\|C\|_{F}+c\right) \geq 0$, then there is a (unique) X with $\|X\|_{F} \leq 2 \frac{d}{\operatorname{sep}(A, B)-a-b}$ such that $\left[\begin{array}{c}I \\ X\end{array}\right]$ spans an invariant subspace of $M+\delta_{M}$.

Proof (sketch)

$-M+\delta M=\left[\begin{array}{cc}A+\delta_{A} & C+\delta_{C} \\ \delta_{D} & B+\delta_{B}\end{array}\right]$

- Look for a transformation $V^{-1}(M+\delta M) V$ of the form $V=\left[\begin{array}{ll}1 & 0 \\ x & 1\end{array}\right]$ that zeroes out the $(2,1)$ block.
- Formulate a Riccati equation

$$
X\left(A+\delta_{A}\right)-\left(B+\delta_{B}\right) X=\delta_{D}-X(C+\delta C) X
$$

- See it as a fixed-point problem

$$
X_{k+1}=\hat{T}^{-1}\left(\delta_{D}-X_{k}(C+\delta C) X_{k}\right)
$$

- Take norms, show that the iteration map sends a ball $B(0, \rho)$ (for sufficiently small ρ) to itself:

$$
\left\|X_{k+1}\right\|_{F} \leq\left\|\hat{T}^{-1}\right\|\left(d+\left\|X_{k}\right\|_{F}^{2}\left(\|C\|_{F}+c\right)\right)
$$

- $\left\|\hat{T}^{-1}\right\|^{-1}=\sigma_{\text {min }}(\hat{T}) \geq \sigma_{\text {min }}(T)-a-b$ (from SVD perturbation results.)

Applications of Sylvester equations

Apart from the ones we have already seen:

- As a step to compute matrix functions.
- Stability of linear dynamical systems. Lyapunov equations $A X+X A^{\top}=B, B$ symmetric.
- As a step to solve more complicated matrix equations (Newton's method \rightarrow linearization).

We will re-encounter them later in the course.

