
Methods for general matrix functions
We now explore methods for matrix functions in general (not
restricting to specific choices of f ). [Higham book, Ch. 4]

Simplest strategy (if A diagonalizable): A = V ΛV−1, then

f (A) = Vf (Λ)V−1 = V

f (λ1)
. . .

f (λm)

V−1.

Works fine if A is symmetric/Hermitian/normal (and Q
orthogonal). Otherwise, errors on f (λi ) (or in the diagonalization
itself) are amplified by a factor κ(V ) — possibly much higher than
the conditioning of the problem.
Example: sqrt of

[ 3 −1
1 1

]
: Matlab computes an eigenvector matrix

V with κ(V ) ≈ 107, and computing f (A) via diagonalization
‘loses’ 7 significant digits with respect to the exact result (which
you can compute with the interpolating polynomial).



Polynomial evaluation
How to evaluate polynomials in a matrix argument?
I Direct evaluation: compute powers of X by successive

products, take a linear combination of them).
I Horner method: (. . . (((adX + ad−1)X + ad−2)X + . . . )X + a0I

Bulk of the cost: d − 1 matrix products, in both cases. Unlike the
scalar case, the two methods are essentially equivalent in terms of
cost.

Cheaper: divide the terms into ‘chunks’ of size approx.
√

d , e.g.,

(p8A2 +p7A+p6)(A3)2 +(p5A2 +p4A+p3)A3 +(p2A2 +p1A1 +p0).

This is known as Paterson-Stockmayer method. Fewer
multiplications, but requires more storage.



Stability of polynomial evaluation methods
All these polynomial evaluation methods are stable only with
respect to the ‘absolute value’ polynomial.

Theorem
The value Ỹ computed by any of these methods satisfies

|Ỹ − p(X )| ≤ O(du)(|p0|+ |p1||X |+ |p2||X |2 + · · ·+ |pd ||X |d ).

All OK if p and X only contain nonnegative values, but in all cases
in which there is cancellation this could be troublesome (an
example later).



Approximating with polynomials
How stable is matrix function evaluation by diagonalization?

Numerically, even if diagonal values are computed “perfectly”
|f (λi )− f̃ (λi )| < ε, we only have

‖f (A)− f̃ (A)‖ = ‖V (f (Λ)− f̃ (Λ))V−1‖ ≤ κ(V )ε,

so you may expect trouble if A is non-diagonalizable (again!) or
close to it.

One needs to study these approximation properties directly “at the
matrix level”.



Convergence of Taylor series

Theorem [Higham book Thm. 4.7]

Suppose f =
∑∞

k=0 fk(x − α)k , with fk = f (k)(α)
k! , is a Taylor series

with convergence radius r .
Then,

lim
d→∞

d∑
k=0

fk(A− αI)k = f (A)

for each A whose eigenvalues satisfy |λi − α| < r .

Proof:
I Taylor polynomials pd (x) =

∑d
k=0 fk(x − α)k converge

(uniformly) to f (x) when |x − α| < r
I r−1 = lim sup(fk)1/k .
I p(k)

d (x) is the Taylor polynomial of f (k) (of degree d − k), and
it has the same radius of convergence.

I If fn → f ‘with enough derivatives’, fn(A)→ f (A).



The problem with Taylor
Taylor series do not solve every problem satisfactorily.

Example: exponential of a 2× 2 matrix.

A =
[
0 α
−α 0

]
, exp(A) =

[
cosα sinα
− sinα cosα

]
.

For α = 30, even summing a lot of terms gives poor precision,
because the intermediate terms of the series grow a lot (the “hump
phenomenon”) with respect to the final result: cancellation.

In the scalar case, we can solve the problem by switching to the
alternative formula exp(A) = (exp(−A))−1, but not in the matrix
case.



Padé approximations
Variant: Padé approximations, i.e., rational approximations.

Padé approximant (at x = 0)
For almost every f analytic at 0 and for every choice of degrees
deg p, deg q, one can find a rational function p(x)

q(x) such that

f (x)− p(x)
q(x) = O(xdeg p+deg q+1).

i.e., “matches first deg p + deg q terms of the MacLaurin series”.
(Count degrees of freedom to get a hint of why it works.)

Proof: series expansion of f (x)q(x) = p(x) gives a linear system.

For many functions, Padé approximants converge faster than
Taylor series.

We will examine them for specific functions, e.g. the exponential.



Parlett recurrence
When Jordan is unstable, use Schur.

Can one compute matrix functions using the Schur form of A?

Example

A =
[
t11 t12
0 t22

]
, f (A) =

[
s11 s12
0 s22

]
.

Clearly, s11 = f (t11), s22 = f (t22).

Trick: expanding Af (A) = f (A)A, one gets an equation for s12:

t11s12 + t12s22 = s11t12 + s12t22 =⇒ s12 = t12
s11 − s22
t11 − t22

.

(If t11 = t22, the equation is not solvable and we already know that
the finite difference becomes a derivative).



Parlett recurrence — II
The same idea works for larger blocks (provided we compute things
in the correct order):

A =

t11 t12 t13
t22 t23

t33

 , f (A) =

s11 s12 s13
s22 s23

s33

 ,
t11s13 + t12s23 + t13s33 = s11t13 + s12t23 + s13t33.

Very similar to the algorithm we used to solve Sylvester equations.
In some sense, we are solving the (singular) Sylvester equation
AX − XA = 0 for X = f (A), after setting specific elements on its
diagonal.

The same idea works blockwise: the quotients become Sylvester
equations.



Parlett recurrence — III

Algorithm (Schur–Parlett method)

1. Compute Schur form A = QTQ∗;
2. Partition T into blocks with ‘well-separated eigenvalues’;
3. Compute f (Tii ) (e.g., with a Taylor series centered in the

average of the cluster);
4. Use recurrences to compute off-diagonal blocks of f (T );
5. Return f (A) = Qf (T )Q∗.

Tries to get ‘best of both worlds’: uses Taylor expansion when the
eigenvalues are close, recurrences when they are distant.

Matlab’s funm does this (for selected functions, or when the user
provides derivatives).



Parlett recurrence and block diagonalization
The Parlett recurrence is related to block diagonalization.

Consider the case of 2 blocks for simplicity. T can be
block-diagonalized via

W−1TW =
[

I −X
0 I

] [
T11 T12
0 T22

] [
I X
0 I

]
=
[
T11

T22

]

where X solves T11X −XT22 + T12 = 0 (Sylvester equation). Then

f (T ) = W
[
f (T11)

f (T22)

]
W−1 =

[
f (T11) Xf (T22)− f (T11)X

f (T22)

]
.

(Note indeed that S = Xf (T22)− f (T11)X solves the Sylvester
equation appearing in the Parlett recurrence.)

So both methods solve a Sylvester equation with operator
Z 7→ T11Z − ZT22.


