
Matrix functions and automatic differentiation
Intermezzo: some words on automatic differentiation: a trick
popular now in machine learning that allows one to compute
derivatives of arbitrary functions on a computer.

Problem
Given code function y = f(x) to compute a function
f : R→ R, how does one compute (or approximate) f ′(x) in a
given point?

function y = f(x)
z = x * x;
w = x + 5;
y = z * w;



Numerical differentiation
First attempt: numerical differentiation: compute g = f (x+h)−f (x)

h ,
with a fixed h > 0.
Problem: Two sources of error:
I g − f ′(x) = 1

2 f ′′(ξ)h for a nearby point ξ (Taylor expansion).
I because of machine arithmetic, even with perfect code we can

compute only f (x)(1+ δ1) and f (x + h)(1+ δ2) with |δi | < u.
So the computed value g̃ of g = f (x+h)−f (x)

h is affected by an
error that we can bound with u |f (x)|+|f (x+h)|

h
So the total error can only be bounded by

|g̃ − f ′(x)| ≤ |12 f ′′(ξ)|h + u |f (x)|+ |f (x + h)|
h .

Assuming |12 f ′′(ξ)|, |f (x)|, |f (x + h)| = O(1), this error bound is
minimized when h ≈ u1/2 and is O(u1/2).

Numerical derivatives can only be computed with accuracy
O(u1/2).



Example

>> x = 5
x =

5
>> h = 1e-4; g = (f(x+h) - f(x)) / h
g =

1.250020000097152e+02
% error ≈ 10−4

>> h = 1e-8; g = (f(x+h) - f(x)) / h
g =

1.250000025265763e+02
% error ≈ 10−8

>> h = 1e-12; g = (f(x+h) - f(x)) / h
g =

1.249986780749168e+02
% error ≈ 10−4



Complex step differentiation
A similar trick: if f is holomorphic, and your code to compute it
works also for complex inputs, then for x ∈ R

f (x + ih) = f (x) + f ′(x)ih − f ′′(x)
2 h2 + O(h3),

so g = Im f (x+ih)
h is an approximation of the derivative f ′(x) with

error g − f ′(x) = O(h2).
This time, the total error is bounded by

|g̃ − f ′(x)| ≤ 1
6 |f
′′′(ξ)|h2 + |Im f (x + ih)|uh

Error O(u) with h = O(h1/2), when the error on Im f (x + ih) is
∼ |Im f (x + ih)|u (but if real/imaginary parts are ’mixed’ in
computation, it is ∼ |f (x + ih)|u).

Key idea
We exploited the fact that our code runs also for a more general
type (complex numbers vs. reals) to obtain a better bound.



Example

>> x = 5
x =

5
>> h = 1e-4; g = imag(f(x+1i*h) - f(x)) / h
g =

1.249999999900000e+02
>> h = 1e-8; g = imag(f(x+1i*h) - f(x)) / h
g =

1.250000000000000e+02
>> h = 1e-12; g = imag(f(x+1i*h) - f(x)) / h
g =

1.250000000000000e+02



Automatic differentiation via matrix functions
Suppose our code works also for matrix arguments x (which we
can achieve with some changes):

function y = f(x)
n = size(x, 1)
z = x * x;
w = x + 5*eye(n);
y = z * w;

Then,

f


λ 1

λ 1
λ


 =

f (λ) f ′(λ) f ′′(λ)
2

f (λ) f ′(λ)
f (λ)

 .
No “small h” and subtractions are needed this time =⇒ the
derivative can be computed with error O(u).



Automatic differentiation
This trick (known as automatic differentiation) computes
derivatives up to machine precision error O(u).

It is something fundamentally different from numerical
differentiation; it is more similar to symbolic differentiation with a
computer algebra system, but easier to do algorithmically.

This works in much greater generality, for instance with loops,
conditionals, and more complicated functions:



function y = somefunction(x)
a = x*x + 1;
z = 2 / a;
while z < 5

z = z^2;
end
y = exp(z);

This function is not continuous at “decision points” (when z = 5
at some iteration of the while).

function y = somefunction(x)
n = size(x, 1);
a = x*x + eye(n);
z = 2 * inv(a);
while z(1,1) < 5

z = z^2;
end
y = expm(z);



What is going on
Actually, we do not need matrices here: all operations are on
triangular Toeplitz matrices, so we can just store the first row.

In essence, this is propagating Taylor expansions: instead of the
input x , we start from x + ε, and whenever we compute a variable
we compute the first n coefficients of its Taylor expansion
alongside it; for instance given code

function y = f(x) % input: x=5
z = x * x; % z is 25
w = x + 5; % w is 10
y = z * w; % y is 250

we can compute two derivatives (n = 3) alongside it:



function y = f(x) % input: x = 5 + ε = 5 + 1ε+ 0ε2 +O(ε3)
z = x * x; % z is (5 + 1ε+ 0ε2 +O(ε3))(5 + 1ε+ 0ε2 +O(ε3))
% z = 25 + 10ε+ 1ε2 +O(ε3)
w = x + 5; % w is (5 + 1ε+ 0ε2 +O(ε3)) + 5
% w = 10 + 1ε+ 0ε2 +O(ε3)
y = z * w; % y is (25 + 10ε+ 1ε2 +O(ε3))(10 + 1ε+ 0ε2 +O(ε3))
% y = 250 + 125ε+ 20ε2 +O(ε3)

From this Taylor expansion we can read off the first two derivatives
of y = f (x) in x = 5.
How do we get the computer to do all this automatically without
writing ad-hoc code? By defining a class Taylor that contains a
length-3 vector as its data member.



function y = f(x) % input: x = Taylor[5 1 0]
z = x * x; % z = Taylor[5 1 0] * Taylor[5 1 0]
% z = Taylor[25 10 1]
w = x + 5; % w = Taylor[5 1 0] + Taylor[5 0 0]
% w = Taylor[10 1 0]
y = z * w; % y = Taylor[25 10 1] * Taylor[10 1 0]
% y = Taylor[250 125 20]

Rules for operations:
I A real a is converted to Taylor[a 0 0]
I Taylor[a0, a1, a2] + Taylor[b0, b1, b2]

= Taylor[a0+b0, a1+b1, a2+b2]
I Taylor[a0, a1, a2] * Taylor[b0, b1, b2]

= Taylor[a0*b0, a1*b0+a0*b1, a2*b0+a1*b1+a0*b2]

Matlab is not the best language in the world, but it can do OOP,
too.



In Matlab

classdef Taylor
properties

coeffs %length-3 vector
end
methods

function obj = Taylor(v)
obj.coeffs = v;

end
function c = plus(a, b)

if isa(b, ’double’), b = Taylor([b 0 0]); end
c = Taylor(a.coeffs + b.coeffs);

end
function c = mtimes(a, b)

c = Taylor([a.coeffs(1)*b.coeffs(1), a.coeffs(1)*b.coeffs(2) + a.coeffs(2)*b.coeffs(1), a.coeffs(1)*b.coeffs(3) + a.coeffs(2)*b.coeffs(2) + a.coeffs(3)*b.coeffs(1)]);
end

end
end



Automatic differentiation, generically
For any elementary operation z = f (a, b, . . . ), we can update
derivatives alongside according to composite-function
differentiation rules:

z ′ = ∂f
∂a a′ + ∂f

∂b b′ + . . .

z ′′ = ∂2f
∂a2 (a′)2 + ∂f

∂a a′′ + ∂2f
∂b2 (b′)2 + ∂f

∂b b′′ + . . .

. . . . . .

(The formulas get lengthy if we want higher derivatives.)

As long as we can do this for each operation appearing in our code
(ab, a/b, exp(a), . . . ), by overloading these functions for our type
Taylor, we can effectively compute derivatives algorithmically.

Again, the key is code that supports different types and operator
overloading.



Special case: dual numbers
The most common case is when one only needs one derivative.

A convenient formalism for this case: dual numbers.

I Replace each quantity a with a + εa′.
I Operations are performed with usual algebraic rules plus
ε2 = 0.

I a * b becomes (a + εa′)(b + εb′) = ab + (a′b + ab′)ε.
I The input variable x becomes x + ε1.

Various ways to think about it:
I ε is “infinitesimal”.
I Operations in R[ε]/(ε2).

I ε =
[
0 1
0 0

]
.

. . . but in the end they are implemented as length-2 vectors
[a a’].



What machine learning does
This is called forward mode of automatic differentiation. There is
also a reverse mode which is more popular in some contexts; most
notably machine learning, where it is known as back-propagation).

General idea: After having computed y = f (x), revisit your code
backwards line-by-line and for each intermediate variable a
determine iteratively ∂y

∂a (and higher derivatives if needed).



Reverse-mode: example

x

w

z

y

function y = f(x) % input: x=5
z = x * x; % ∂z

∂x = 2x = 10
w = x + 5; % ∂w

∂x = 1
y = z * w; % ∂y

∂w = z = 25, ∂y
∂z = w = 10

We can work our way upwards and compute starting from the end

∂y
∂w = z = 25, ∂y

∂z = w = 10,

∂y
∂x = ∂y

∂w
∂w
∂x + ∂y

∂z
∂z
∂x = 25 · 1 + 10 · 10 = 125.



Comments
This manipulation requires more complicated transformations to
the code than forward-mode: one must build a dependency graph,
and ‘re-interpret’ code backwards. Operator overloading is not
sufficient.

While they are equivalent for scalar functions, they behave
differently if one tries to extend them to f : Rn → Rm.

Quick result: for a function f : Rn → Rm, computing Jf (all
derivatives) is faster with forward mode if n� m (many outputs),
and with reverse mode if n� m (many inputs).


