
The matrix exponential
We will now discuss some specific important matrix functions.
First one:

expm(A) = I + A + 1
2A2 + 1

3!A3 + . . . .

Useful to recall it: the solution of the ODE initial value problem

d
dt v(t) = Av(t), v(0) = v0

is v(t) = expm(At)v0.

Proof: we can differentiate term-by-term

v(t) = v0 + tAv0 + t2

2 A2v0 + t3

3 A3v0 + . . . .

Nice fact: explicit Euler produces exp(At) ≈ (I + t
nA)n.



How to compute expm(A)?
It is easy to come up with ways that turn out to be unstable.
[Moler, Van Loan, “Nineteen dubious ways to compute the exponential of a
matrix”, ’78 & ’03].
Example truncated Taylor series, I + A + 1

2A2 + 1
6A3 · · ·+ 1

k!A
k .

(See example in the previous slide set.)



Growth in matrix powers
The main problem in computing matrix power series: intermediate
growth of coefficients.
Example Even on a nilpotent matrix, entries may grow.

A =


0 10

0 10
0 10

0

 , A2 =


0 0 100

0 0 100
0 0

0

 , A3 =


0 0 0 1000

0 0 0
0 0

0

 .
Typical behavior for non-normal matrices. Growth + cancellation
= trouble.

(For normal matrices, ‖Ak‖ = ‖A‖k = |λmax|k .)



“Humps”
Similarly, exp(tA) may grow for small values of t before ‘settling
down’.
Example
>> A = [-0.97 25; 0 -0.3];
>> t = linspace(0,20,100);
>> for i = 1:length(t); y(i) = norm(expm(t(i)*A)); end
>> plot(t, y)

This means there must be cancellation going on: if

exp(A) = exp(1
2A)2

has a norm that is much smaller than exp(1
2A), then it means that

there is cancellation when forming the square.
Expect intermediate growth if you try to compute the exponential
by solving the ODE problem

X ′(t) = AX (t), X (0) = I.



Padé approximants
Padé approximants to the exponential (in x = 0) are known
explicitly.

Padé approximants to exp(x)
|exp(x)− Npq(x)/Dpq(x)| = O(xp+q+1), where

Npq(x) =
p∑

j=0

(p + q − j)!p!
(p + q)!j!(p − j)!x j ,

Dpq(x) =
q∑

j=0

(p + q − j)!q!
(p + q)!j!(q − j)!(−x)j .

exp(A) ≈ (Dpq(A))−1Npq(A).
The main danger comes from Dpq(A)−1.
For large p, q, Dpq(A) ≈ exp(−1

2A). κ(Dpq(A)) ≈ e− 1
2 λmin

e− 1
2 λmax

.



Backward error of Padé approximants
Are Padé approximants reliable when ‖A‖ is small, at least?

Let H = f (A), where f (x) = log(e−x Npq(x)
Dpq(x)). H is a matrix

function, so it commutes with A.
(Note that e−x Npq(x)

Dpq(x) = 1 + O(xp+q+1), so the log exists for x
sufficiently small).
One has exp(H) = exp(−A)(Dpq(A))−1Npq(A), so

(Dpq(A))−1Npq(A) = exp(A) exp(H) = exp(A + H)

(since A and H commute).

We can regard H as a sort of ‘backward error’: the Padé
approximant (Dpq(A))−1Npq(A) is the exact exponential of a
certain perturbed matrix A + H.

Can one bound ‖H‖‖A‖ ?



Bounding ‖H‖
H = f (A), where f (x) = log(e−x Npq(x)

Dpq(x)).
f is analytic, so f (x) = c1xp+q+1 + c2xp+q+2 + c3xp+q+3 + . . . .

H = f (A) = c1Ap+q+1 + c2Ap+q+2 + c3xp+q+3 + . . .

‖H‖ ≤ |c1|‖A‖p+q+1 + |c2|‖A‖p+q+2 + |c3|‖A‖p+q+3 + . . .

All these quantities can be computed, explicitly or with
Mathematica (but it’s a lot of work).
Luckily, someone did it for us. For instance:

[Higham book ’08, p. 244]

If p = q = 13 and ‖A‖ ≤ 5.4, then ‖H‖‖A‖ ≤ u (machine precision).

Degree 13 achieves a good ratio between accuracy and number of
required operations (with Paterson–Stockmayer + noting that
numerator and denominator are of the form p(x2)± xq(x2).)
Evaluating N13,13 and D13,13 requires 6 matmuls.



Scaling and squaring
What if ‖A‖ > 5.4? Trick: exp(A) = (exp(1

s A))s .

Algorithm (scaling and squaring)

1. Find s = 2k such that ‖1
s A‖ ≤ 5.4.

2. Compute F = D13,13(B)−1N13,13(B), where D13,13 and N13,13
are given polynomials and B = 1

s A.
3. Compute F 2k by repeated squaring.

This is Matlab’s expm, currently (more or less — approximants of
degree smaller than 13 are used in some cases).



Is scaling and squaring stable?
Note that ‘humps’ may still give problems: exp(B) may be much
larger than exp(A) = exp(B)2k , leading to cancellation when
computing the squares.

Is scaling and squaring stable for all matrices? Numerically it is the
most stable algorithm we have, but there is no explicit stability
proof for the squaring phase.


