Computing Padé approximants

```
>> syms x a b c d e
>> T = taylor(exp(x), x, 0, 'Order', 5)
T =
x^4/24 + x^3/6 + x^2/2 + x + 1
>> D = x^2+a*x+b;
>> N = c*x^2 + d*x + e;
>> collect(expand(T*D-N))
ans =
x^6/24 + (a/24 + 1/6)*x^5 + (a/6 + b/24 + 1/2)*x^4 + (a/2
>> C = coeffs(collect(expand(T*D-N)),x)
C =
[ b - e, a + b - d, a + b/2 - c + 1, a/2 + b/6 + 1, a/6 +
>> S = solve(C(1:5),[a,b,c,d,e]);
>> [S.a, S.b, S.c, S.d, S.e]
ans =
[ -6, 12, 1, 6, 12]
```


Accuracy of Padé approximants

>> ezplot(exp(x), -5, 5);
>> hold on;
>> ezplot(pade(exp(x), x, 'Order', [2,2]), -5, 5);
We saw that $D(A)^{-1} N(A)=\exp (A+H)$, where $H=f(A)$ corresponds to the matrix function $f(x)=\log \left(\exp (-x) \frac{N(x)}{D(x)}\right)$
>> $P=\operatorname{pade}(\exp (x), x, \quad$ Order', $[2,2])$;
>> $\mathrm{T}=\operatorname{taylor}(\log (\exp (-\mathrm{x}) * \mathrm{P})$, 'Order', 20)
T =
$-x^{\wedge} 19 / 98035826688-x^{\wedge} 17 / 7309688832+x^{\wedge} 13 / 38817792+x^{\wedge} 1$
>> AbsC = abs(coeffs(T,'All'))
AbsC =
[$1 / 98035826688,0,1 / 7309688832,0,0,0,1 / 38817792,0$,
>> \% Solve |C|(x) = 2e-16
>> double(solve(C * x. ${ }^{\wedge}$ transpose(19:-1:0) - 2e-16, x, 'Reaans =
$3.1037 \mathrm{e}-03$

Remark

The same technique (both to construct Padé approximants and to evaluate their backward stability) can be applied to other functions as well; the exponential is just a nice example.

In general, these rational approximations work well only when the eigenvalues are in a sufficiently small region.

