Conditioning of computing matrix functions

Recall: the absolute condition number of a differentiable
f:R™ — R"” is the norm of its Jacobian.

f(x) = f(x+ h) = f(x) + V«f - h+ o(h) implies
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Fréchet derivative
The Fréchet derivative is an "operator version” of the Jacobian.
Definition

The Fréchet derivative of a matrix function f is the linear operator
Lex : R™*™ — R™X™ (when it exists) such that

F(X+ E) = f(X) + Lr.x(E) + o(| E[)-

l.e., in a neighbourhood of X, f behaves like a linear function.



Example
f(x) = x2, f(X) = X2

(X 4+ E)?=X?+ XE + EX + E? = X?> + XE + EX +o(|| E||?).
Lt x(E)
f,X

L¢ x is a linear operator that maps matrices to matrices — we can
consider its vectorized version:

~

L:vecE — vecls x(E).

In this case, R
L=X"®l+I®X.

L (an n? x n? matrix) is the “usual” Jacobian of the map
vec X — vec f(X).



Properties

Follow from those of Jacobians:

> Lrigx = Lex+ Lgx.

> Lrogx = Lrg(x) o Lgx-

> Levx) = Lix
Example Let g(y) = /y (principal branch: we take the root in the
right half-plane), Y with no real nonpositive eigenvalue.

Then g(y) is the inverse of f(x) = x2, and its Fréchet derivative
F = Lg y(E) is the matrix such that L¢ x(F) = E, i.e.,

XF+FX=E, X=f(Y)=YY2

(solution of a Sylvester equation). X has eigenvalues in the right
half-plane, so the Sylvester equation is always solvable:
AX)NA(=X) = 0.



Derivative of the exponential
Derivative of the matrix exponential:

1 1
exp(X+E):I+(X+E)—|—§(X+E)2+§(X+E)3+...
1

1
:l+(X+E)+§(X2+EX+XE+E2)+3|
1 1
= exp(X) + E + S(EX + XE) + §(X2E+XEX + X2E)
+---+ O E[?)

(X2+...)

The series converges, but there is no easy closed form.

- 1 1
L= I+§(/®X+XT®I)+§(I®X2+XT®X+(X2)T®I)+...



Trick to compute L¢ x(E)

Let f be Fréchet differentiable. Then,
p X E|\ _|f(X) Lex(E)
0 X|/ | 0 f(X) |-

X+eE E

Proof (sketch) Evaluate £ ( 0 X

1) by block-diagonalizing.

We need l(l) ﬂ where Z solves (X + ¢E)Z — ZX = E, which

has solution Z = —%l (to block-diagonalize it, it is sufficient to
find one solution, even if the Sylvester equation is singular). The
f(X + cE) f(A+EE)f(X)]

[

evaluation gives [ 0 £F(X)



Existence of the Fréchet derivative

Theorem

If f € C?>™~1(U), then L¢ x exists for each X € R™*™ with
eigenvalues in U.

Proof (sketch) The proof of the previous theorem shows that the
directional derivatives of f (seen as a map R™ — R’"Q) exist and
are continuous (since matrix functions are continuous). It is a
classical result in multivariate calculus that then f is continuously
differentiable.



Fréchet derivative and condition number
Hence, Kaps(f, X) = ||Lf x||.
...with some attention to what ‘norm’ means here.

The norm used for | X — X|| is any matrix norm on n X n matrices,
and ||L¢ x|| is the ‘operator norm’ (on n? x n? matrices) induced
by it.

Easy case If we take X — X||g, it corresponds to |[vec X2, so
Kabs(f, X) = || Le x]l2-

Harder cases For all other norms (|| X — X||2 in particular), no
equivalent simple expression for the ‘induced operator norm’.



Eigenvalues of Fréchet derivatives [Higham book ‘08, Ch. 3]

Theorem
Let X have eigenvalues A1, ..., A,. The eigenvalues of L¢ x are

fAD)—f(\) i ?é_/

fIAi, Aj] == A=A
i Al {f’(/\,-) i=].

Proof First of all, replace f(x) with its interpolating polynomial
p(x) on the spectrum of A (and twice the multiplicities, to make
sure the derivatives exist: [§ £] must be well-defined).

(continues)



PX+E)=po+ (X+E)+p(X+E)?+p(X+E)+
= po + p1(X + E) + pa(X? + EX + XE + E?) + p3(X> +
= p(X) + pLE + p2(EX 4+ XE) + p3(X2E + XEX + X?E)
+---+ O(|E[?)

Vectorizing,
Lix = prl+p(loX+XT @) +p3(1o X2+ XTaX+(X?) Tel)+

ie.,

d k
— Z Z Xk h ®Xh_1
k=0 h=1



Eigenvalues of Fréchet derivatives

LfX_Zka Xk h Xh—l

= h=1

Take Schur forms X = @ TlQl XT =@ TQQ2T to obtain a
triangular matrix T.

On its diagonal, we can read off the eigenvalues

k—hyh—1 J M= AF
TI+I’I(] 1),i+n(j—1) Zpk Z)"_ /\j_)zzpk)\._)\'l.
h=1 k=0 ! J

_ p(/\i) —p(N) _ () = (X))

)\,'—/\J' )\i_)\j '

(if A\j # \j, otherwise a similar computation produces f'(\;).)

This completes the proof.



Condition number bound

If X is diagonalizable, we can replace the Schur form with an
eigendecomposition, and obtain a bound

Theorem

Let X = VAV~! be diagonalizable. Then, for the Frobenius norm,

ravs(f, X) = | Lr x|l < w2(V)? 122951 g A

(And then as usual rrei(F, X) = raps(F, X) i)

This bound shows two ‘causes’ of ill-conditioning:
> |f[Ai, Ajl| is large, or
» ro(V) is large (i.e., X very non-normal).

Example f(x) = v/x (principal square root): for which choices of
A(X) are the incremental rations |f[\;, A]| large?



