
Conditioning of computing matrix functions
Recall: the absolute condition number of a differentiable
f : Rm → Rn is the norm of its Jacobian.

f (x̃) = f (x + h) = f (x) +∇x f · h + o(h) implies

κabs(f , x) = lim
ε→0

sup
‖x̃−x‖≤ε

‖f (x̃)− f (x)‖
‖x̃ − x‖ = ‖∇f ‖

κrel (f , x) = lim
ε→0

sup
‖x̃−x‖
‖x‖ ≤ε

‖f (x̃)−f (x)‖
‖f (x)‖
‖x̃−x‖
‖x‖

= κabs(f , x) ‖x‖
‖f (x)‖ .



Fréchet derivative
The Fréchet derivative is an “operator version” of the Jacobian.

Definition
The Fréchet derivative of a matrix function f is the linear operator
Lf ,X : Rm×m → Rm×m (when it exists) such that

f (X + E ) = f (X ) + Lf ,X (E ) + o(‖E‖).

I.e., in a neighbourhood of X , f behaves like a linear function.



Example
f (x) = x2, f (X ) = X 2.

(X + E )2 = X 2 + XE + EX + E 2 = X 2 + XE + EX︸ ︷︷ ︸
Lf ,X (E)

+o(‖E‖2).

Lf ,X is a linear operator that maps matrices to matrices — we can
consider its vectorized version:

L̂ : vec E 7→ vec Lf ,X (E ).

In this case,
L̂ = XT ⊗ I + I ⊗ X .

L̂ (an n2 × n2 matrix) is the “usual” Jacobian of the map
vec X 7→ vec f (X ).



Properties
Follow from those of Jacobians:
I Lf +g ,X = Lf ,X + Lg ,X .
I Lf ◦g ,X = Lf ,g(X) ◦ Lg ,X .
I Lf −1,f (X) = L−1

f ,X .
Example Let g(y) = √y (principal branch: we take the root in the
right half-plane), Y with no real nonpositive eigenvalue.
Then g(y) is the inverse of f (x) = x2, and its Fréchet derivative
F = Lg ,Y (E ) is the matrix such that Lf ,X (F ) = E , i.e.,

XF + FX = E , X = f (Y ) = Y 1/2.

(solution of a Sylvester equation). X has eigenvalues in the right
half-plane, so the Sylvester equation is always solvable:
Λ(X ) ∩ Λ(−X ) = ∅.



Derivative of the exponential
Derivative of the matrix exponential:

exp(X + E ) = I + (X + E ) + 1
2(X + E )2 + 1

3! (X + E )3 + . . .

= I + (X + E ) + 1
2(X 2 + EX + XE + E 2) + 1

3! (X 3 + . . . )

= exp(X ) + E + 1
2(EX + XE ) + 1

3! (X 2E + XEX + X 2E )

+ · · ·+ O(‖E‖2)

The series converges, but there is no easy closed form.

L̂ = I + 1
2(I⊗X + XT ⊗ I) + 1

3! (I⊗X 2 + XT ⊗X + (X 2)T ⊗ I) + . . .



Trick to compute Lf ,X (E )

Let f be Fréchet differentiable. Then,

f
([

X E
0 X

])
=
[
f (X ) Lf ,X (E )
0 f (X )

]
.

Proof (sketch) Evaluate f
([

X + εE E
0 X

])
by block-diagonalizing.

We need
[

I Z
0 I

]
, where Z solves (X + εE )Z − ZX = E , which

has solution Z = −1
ε I (to block-diagonalize it, it is sufficient to

find one solution, even if the Sylvester equation is singular). The

evaluation gives
[
f (X + εE ) f (A+εE)−f (X)

ε
0 f (X )

]
.



Existence of the Fréchet derivative

Theorem
If f ∈ C2m−1(U), then Lf ,X exists for each X ∈ Rm×m with
eigenvalues in U.

Proof (sketch) The proof of the previous theorem shows that the
directional derivatives of f (seen as a map Rm2 → Rm2) exist and
are continuous (since matrix functions are continuous). It is a
classical result in multivariate calculus that then f is continuously
differentiable.



Fréchet derivative and condition number
Hence, κabs(f ,X ) = ‖Lf ,X‖.

. . . with some attention to what ‘norm’ means here.

The norm used for ‖X̃ − X‖ is any matrix norm on n× n matrices,
and ‖Lf ,X‖ is the ‘operator norm’ (on n2 × n2 matrices) induced
by it.

Easy case If we take ‖X̃ − X‖F , it corresponds to ‖vec X‖2, so
κabs(f ,X ) = ‖L̂f ,X‖2.

Harder cases For all other norms (‖X̃ − X‖2 in particular), no
equivalent simple expression for the ‘induced operator norm’.



Eigenvalues of Fréchet derivatives [Higham book ’08, Ch. 3]

Theorem
Let X have eigenvalues λ1, . . . , λn. The eigenvalues of Lf ,X are

f [λi , λj ] :=


f (λi )−f (λj )
λi−λj

i 6= j ,
f ′(λi ) i = j .

Proof First of all, replace f (x) with its interpolating polynomial
p(x) on the spectrum of A (and twice the multiplicities, to make
sure the derivatives exist:

[ X E
0 X

]
must be well-defined).

(continues)



p(X + E ) = p0 + (X + E ) + p1(X + E )2 + p2(X + E )3 + . . .

= p0 + p1(X + E ) + p2(X 2 + EX + XE + E 2) + p3(X 3 + . . . )
= p(X ) + p1E + p2(EX + XE ) + p3(X 2E + XEX + X 2E )

+ · · ·+ O(‖E‖2)

Vectorizing,

L̂f ,X = p1I+p2(I⊗X +XT⊗I)+p3(I⊗X 2+XT⊗X +(X 2)T⊗I)+. . .

i.e.,

L̂f ,X =
d∑

k=0
pk

k∑
h=1

(X k−h)T ⊗ Xh−1



Eigenvalues of Fréchet derivatives

L̂f ,X =
d∑

k=0
pk

k∑
h=1

(X k−h)T ⊗ Xh−1

Take Schur forms X = Q1T1QT
1 , XT = Q2T2QT

2 to obtain a
triangular matrix T .

On its diagonal, we can read off the eigenvalues

Ti+n(j−1),i+n(j−1) =
d∑

k=0
pk(

k∑
h=1

λk−h
i λh−1

j ) =
d∑

k=0
pk
λk

i − λk
j

λi − λj

= p(λi )− p(λj)
λi − λj

= f (λi )− f (λj)
λi − λj

.

(if λi 6= λj , otherwise a similar computation produces f ′(λi ).)

This completes the proof.



Condition number bound
If X is diagonalizable, we can replace the Schur form with an
eigendecomposition, and obtain a bound

Theorem
Let X = V ΛV−1 be diagonalizable. Then, for the Frobenius norm,

κabs(f ,X ) = ‖L̂f ,X‖ ≤ κ2(V )2 max
i ,j
|f [λi , λj ]|.

(And then as usual κrel (f ,X ) = κabs(f ,X ) ‖X‖‖f (X)‖ .)

This bound shows two ‘causes’ of ill-conditioning:
I |f [λi , λj ]| is large, or
I κ2(V ) is large (i.e., X very non-normal).

Example f (x) =
√

x (principal square root): for which choices of
Λ(X ) are the incremental rations |f [λi , λj ]| large?


