The matrix sign function

1 Rex > 0,
sign(x) = ¢ —1 Rex < 0,
undefined Rex = 0.

Suppose the Jordan form of A is reblocked as
_ h -1
a=fwowl [P v

where J; contains all eigenvalues in the LHP (left half-plane) and
J> in the RHP. Then,

sign(A) = Vi V] [_' /] v vz]_l.

sign(A) is always diagonalizable with eigenvalues +1. sign(A) &/
gives the projections on the span of the eigenvectors in the
RHP/LHP (unstable/stable invariant subspace).



Sign and square root

Useful formula: sign(A) = A(A?)~1/2 where A'/2 is the principal
square root of A (all eigenvalues in the right half-plane), and
A~1/2 is its inverse.

X

Proof: consider eigenvalues, sign(x) = O

(Care with signs.)

Theorem

If AB has no eigenvalues on R<q (hence neither does BA), then
. |0 A 0 C _
Sign [B o] - lc—l 0] , C=A(BA)2

Proof (sketch) Use sign(A) = A(A?)~1/2 (and then sign(A)? = /).

For instance,
|0 Al | 0o A2
sign 1ol = a1 o |-



Conditioning
From the theorems on the Fréchet derivative, for a diagonalizable A

2

MiNRe \;<0, Re \; >0/ Ai — Aj

Kabs(sign(A)) < ka(V)

This bound tells only part of the truth:

» One one hand, computing sign(A) is "better” than a full
diagonalization: it is not sensitive to close eigenvalues that are
far from the imaginary axis.

» On the other hand, when the invariant subspaces are badly
separated the bound depends on higher powers of the
separation (we will see in the following).



Schur-Parlett method

We can compute sign(M) with a Schur decomposition. It makes
sense to reorder it so that eigenvalues in the LHP come first:
A(A) C LHP, N(B) C RHP.

oo (A C \ [z
Q/V/Q—[O B]’ Qf(M)Q—[O I]
where Z solves AZ — ZB = —f(A)C + Cf(B) = 2C.

The condition number of this Sylvester equation depends on
sep(A, B).



Schur-Parlett for the sign

1. Compute M = QTQ*.
2. Reorder Schur decomposition so that eigenvalues in the LHP
come first.

3. Solve Sylvester equation for Z.
4. sign(M) = Q[B’ ﬂQ*

(Matlab example)



Conditioning of the matrix sign
We can use this result to obtain a perturbation bound that
explains what happens when sep(A, B) is small.

Recall our perturbation result for the Sylvester equation: given

A

M= 0 g] and a perturbation M = M + E, there exists X with

IIX||F = (Sep(A B)) such that
I 0 I 0
el

For a sufficiently small perturbation, sign(RHS) = ll

Z solves

N
™

(A+CX)Z - Z(B-XC) =



Conditioning of the matrix sign

The coefficients of this equation are a perturbation of size

O(selﬂfB)) of those of AZ — ZB =2C —

1EllF
sep(A, B)?

IEllF

1Z—2Z||F = O( W)H IF.

)ZllF = O

So

||sign(M+E)sign(M>||F=H L’( ﬂ L’) ﬂ [_’X ﬂ[é ﬂ

is of order O(se;‘)‘(EA”gP)' The sign is extremely sensitive to

perturbations, when sep(A, B) is small.

F

However, it has a stable invariant subspace [7’)& at distance only

O(sel,‘)l(:_/l\lFB)) from that of M (the same as its condition number).
So the (numerically unstable) sign is a numerically stable method

to compute the stable invariant subspace.



Newton for the matrix sign
Most popular algorithm:

Newton for the matrix sign

sign(A) = limg_, o Xk, where

1 _
Xi+1 = E(Xk + X1, Xo=A

Suppose A diagonalizable: then we may consider the scalar version
of the iteration on each eigenvalue A:

1( +1> xg +1 \
X = < | X — | = —— X0 = A.
k+1 2 k Xk 2k ’ 0

This is Newton’s method on f(x) = x? — 1, which justifies the
name. It has fixed points 1, with (locally) quadratic convergence.



Convergence analysis of the scalar iteration

Theorem
The limit of xc41 = 3 (Xk - X—lk) is sign(xp) (for Re(xp) # 0).

Trick: change of variables (Cayley transform)

-1 1
y = Xi, with inverse x = i
x+1 y—1
If x € RHP, then |x + 1| > |[x — 1| = y inside the unit disk.
If x € LHP, then |[x — 1| > |x + 1] = y outside the unit disk.
(It's a Padé approximant of exp(—2x), with the same property.)

xkl

If yp = for each k, then y, 1 = ,f (check).

x0 € RHP = |y| <1 = lim y4 =0 = lim x,=1;
k—o00 k—o00

X €ELHP = |yp|>1 = lim yy =00 = lim xx = —1.
k—00

k—o00



Rational approximations of the step function

Let g(x) = 2(x 4+ 1/x); then its iterates gk are rational
approximations of the step function sign(x) around —1 and 1.

>> syms x

>> g = 1/2x(x + 1/x);

>> g2 = simplify(subs(g, %, g))
>> g3 = subs(g2, x, g)

>> fplot(g, [-2,2])

>> axis([-2 2 -2 2]);

>> hold on

>> fplot(g2, [-2,2])

>> fplot(g3, [-2,2])

(They diverge badly around 0, though.)
Can you recognize the coefficients of g2, g37



Theorem

k

(1 +X)2k)even _ (1 +X)2k + (1 - X)2
1+

(k) () = _
&) = ()P )oas ~ (L4207 — (1= )7

This is not-really-a-Padé approximant, because we are asking for it
to be accurate (up to order 2¥) in both +1 and —1. However, it
can be obtained from

X2)1/2

X

sign(x) =

by taking a Padé approximant of the principal square root x/2.



Convergence analysis of the matrix iteration

A modification of the same proof works in the matrix case.
Assume A has no eigenvalues on the imaginary axis; set

Yi = (X —S)(X+S)71,  with inverse X = (/- Yi) (/4 Y4)S.

All the X are rational functions of A, so they commute with it

and with S.
Analyzing eigenvalues: the inverse exists and p(Yx) < 1.

Yirr = (XU (XR 4+ 1 — 25X ) X (XE + 1+ 25X,) ™ = Y2

Y, — 0, hence X, — S.



The algorithm

1. Xo = A.
2. Repeat Xj11 = %(Xk + Xk_l), until convergence.

We really need to compute that matrix inverse (unusual in
numerical linear algebra. . .)



Scaling

If x, > 1, then

1 ( n 1) 1
Xkr1== Xk +— ) = =x
k1 = 5 | Xk " o Xk
and “the iteration is an expensive way to divide by 2" [Higham].
Same if xx < 1: the iteration just multiplies by 2.

If all the eigenvalues of A are very large/small, then the first
iterations just increase/reduce them via repeated
division/multiplications by 2.

Trick: you can replace A with pA for a scalar g > 0: they have the
same sign. Choose this i1 so that eigenvalues ~ 1.
(Once, or at each step.)



Scaling possibilities

Possibility 1: (determinantal scaling): choose y = (det A)~/", so
that det A = 1. Reduces “mean distance” from 1. Cheap to
compute, since we already need to invert A.

Possibility 2: (spectral scaling): choose u so that
[Amin(4A) Amax (2A)| = 1. (We can use the power method to
estimate them.)

Possibility 3: (norm scaling): choose p so that
Tmin(tA)omax(pA) = 1. (Again via the power method for omin.)

Surprisingly, on a matrix with real eigenvalues Possibility 2 gives
convergence in a finite number of iterations, if done at each step:
the first iteration maps Amin(A) and Amax(A) to eigenvalues with
the same modulus; then the second iteration adds a third
eigenvalue with the same modulus. ..



Stability of the sign iterations

The (floating point) stability analysis is complicated. [Bai Demmel
'98 and Byers Mehrmann He '97]

Even though the algorithm is only sums and inversions, it is
difficult to assess and propagate the impact of numerical errors in
the first steps (which are the most ill-conditioned ones).

TL;DR The stability analysis reflects the results of our conditioning
analysis: while the sign in itself is unstable, it produces invariant
subspaces as good (numerically) as those computed via a reordered
Schur decomposition.



Inversion-free sign

Suppose that we are given M, N such that A= M~IN. Can we
compute sign(A) without inverting M? Yes.

1 1
X1 = 5(A+A—1) = 5(/\/1—1/\/ + N7tm)
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assuming we can find M, N such that MN—t = (1.
Then the same computations produce My, No, M3, N3, . ..



Inversion-free sign
How to find M, Nl such that MN—! = (1~ {?

M

MM = NN, or [I\Aﬂ N} [—N] = 0. We can obtain M,N from a

kernel.

Computing this kernel can be much more accurate than inverting
M and/or N, e.g.,

| — |
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All this is a sort of ‘linear algebra on pencils’: we map N — xM to
N; — xMy (one final project on this).



