
The matrix sign function

sign(x) =


1 Re x > 0,
−1 Re x < 0,
undefined Re x = 0.

Suppose the Jordan form of A is reblocked as

A =
[
V1 V2

] [J1
J2

] [
V1 V2

]−1
,

where J1 contains all eigenvalues in the LHP (left half-plane) and
J2 in the RHP. Then,

sign(A) =
[
V1 V2

] [−I
I

] [
V1 V2

]−1
.

sign(A) is always diagonalizable with eigenvalues ±1. sign(A)± I
gives the projections on the span of the eigenvectors in the
RHP/LHP (unstable/stable invariant subspace).



Sign and square root
Useful formula: sign(A) = A(A2)−1/2, where A1/2 is the principal
square root of A (all eigenvalues in the right half-plane), and
A−1/2 is its inverse.
Proof: consider eigenvalues, sign(x) = x

(x2)1/2 . (Care with signs.)

Theorem
If AB has no eigenvalues on R≤0 (hence neither does BA), then

sign
[
0 A
B 0

]
=
[

0 C
C−1 0

]
, C = A(BA)−1/2.

Proof (sketch) Use sign(A) = A(A2)−1/2 (and then sign(A)2 = I).
For instance,

sign
[
0 A
I 0

]
=
[

0 A1/2

A−1/2 0

]
.



Conditioning
From the theorems on the Fréchet derivative, for a diagonalizable A

κabs(sign(A)) ≤ κ2(V ) 2
minReλi<0,Reλj>0|λi − λj |

This bound tells only part of the truth:
I One one hand, computing sign(A) is “better” than a full

diagonalization: it is not sensitive to close eigenvalues that are
far from the imaginary axis.

I On the other hand, when the invariant subspaces are badly
separated the bound depends on higher powers of the
separation (we will see in the following).



Schur-Parlett method
We can compute sign(M) with a Schur decomposition. It makes
sense to reorder it so that eigenvalues in the LHP come first:
Λ(A) ⊆ LHP, Λ(B) ⊆ RHP.

Q∗MQ =
[
A C
0 B

]
, Q∗f (M)Q =

[
−I Z
0 I

]

where Z solves AZ − ZB = −f (A)C + Cf (B) = 2C .

The condition number of this Sylvester equation depends on
sep(A,B).



Schur-Parlett for the sign

1. Compute M = QTQ∗.
2. Reorder Schur decomposition so that eigenvalues in the LHP

come first.
3. Solve Sylvester equation for Z .
4. sign(M) = Q

[
−I Z
0 I

]
Q∗.

(Matlab example)



Conditioning of the matrix sign
We can use this result to obtain a perturbation bound that
explains what happens when sep(A,B) is small.
Recall our perturbation result for the Sylvester equation: given

M =
[
A C
0 B

]
and a perturbation M̃ = M + E , there exists X with

‖X‖F = O( ‖E‖F
sep(A,B)) such that[

I 0
−X I

]
(M + E )

[
I 0
X I

]
=
[
Ã + C̃X C̃

0 B̃ − XC̃

]
.

For a sufficiently small perturbation, sign(RHS) =
[

I Z̃
0 I

]
, where

Z̃ solves
(Ã + C̃X )Z̃ − Z̃ (B̃ − XC̃) = 2C̃ .



Conditioning of the matrix sign
The coefficients of this equation are a perturbation of size
O( ‖E‖F

sep(A,B)) of those of AZ − ZB = 2C =⇒

‖Z̃ − Z‖F = O( ‖E‖F
sep(A,B)2 )‖Z‖F = O( ‖E‖F

sep(A,B)3 )‖C‖F .

So

‖sign(M+E )−sign(M)‖F =
∥∥∥∥∥
[

I 0
X I

] [
I Z̃
0 I

] [
I 0
−X I

]
−
[

I Z
0 I

]∥∥∥∥∥
F

is of order O( ‖E‖F
sep(A,B)3 ). The sign is extremely sensitive to

perturbations, when sep(A,B) is small.
However, it has a stable invariant subspace

[
I
−X

]
at distance only

O( ‖E‖F
sep(A,B)) from that of M (the same as its condition number).

So the (numerically unstable) sign is a numerically stable method
to compute the stable invariant subspace.



Newton for the matrix sign
Most popular algorithm:

Newton for the matrix sign
sign(A) = limk→∞ Xk , where

Xk+1 = 1
2(Xk + X−1

k ), X0 = A.

Suppose A diagonalizable: then we may consider the scalar version
of the iteration on each eigenvalue λ:

xk+1 = 1
2

(
xk + 1

xk

)
= x2

k + 1
2xk

, x0 = λ.

This is Newton’s method on f (x) = x2 − 1, which justifies the
name. It has fixed points ±1, with (locally) quadratic convergence.



Convergence analysis of the scalar iteration

Theorem
The limit of xk+1 = 1

2

(
xk + 1

xk

)
is sign(x0) (for Re(x0) 6= 0).

Trick: change of variables (Cayley transform)

y = x − 1
x + 1 , with inverse x = y + 1

y − 1 .

If x ∈ RHP, then |x + 1| > |x − 1| =⇒ y inside the unit disk.
If x ∈ LHP, then |x − 1| > |x + 1| =⇒ y outside the unit disk.
(It’s a Padé approximant of exp(−2x), with the same property.)
If yk = xk−1

xk+1 for each k, then yk+1 = y2
k (check).

x0 ∈ RHP =⇒ |y0| < 1 =⇒ lim
k→∞

yk = 0 =⇒ lim
k→∞

xk = 1;

x0 ∈ LHP =⇒ |y0| > 1 =⇒ lim
k→∞

yk =∞ =⇒ lim
k→∞

xk = −1.



Rational approximations of the step function
Let g(x) = 1

2(x + 1/x); then its iterates gk are rational
approximations of the step function sign(x) around −1 and 1.

>> syms x
>> g = 1/2*(x + 1/x);
>> g2 = simplify(subs(g, x, g))
>> g3 = subs(g2, x, g)
>> fplot(g, [-2,2])
>> axis([-2 2 -2 2]);
>> hold on
>> fplot(g2, [-2,2])
>> fplot(g3, [-2,2])

(They diverge badly around 0, though.)
Can you recognize the coefficients of g2, g3?



Theorem

g (k)(x) = ((1 + x)2k )even

((1 + x)2k )odd
= (1 + x)2k + (1− x)2k

(1 + x)2k − (1− x)2k .

This is not-really-a-Padé approximant, because we are asking for it
to be accurate (up to order 2k) in both +1 and −1. However, it
can be obtained from

sign(x) = (x2)1/2

x

by taking a Padé approximant of the principal square root x1/2.



Convergence analysis of the matrix iteration
A modification of the same proof works in the matrix case.
Assume A has no eigenvalues on the imaginary axis; set

Yk = (Xk−S)(Xk +S)−1, with inverse Xk = (I−Yk)−1(I +Yk)S.

All the Xk are rational functions of A, so they commute with it
and with S.
Analyzing eigenvalues: the inverse exists and ρ(Yk) < 1.

Yk+1 = (X−1
k (X 2

k + I − 2SXk))Xk(X 2
k + I + 2SXk)−1 = Y 2

k .

Yk → 0, hence Xk → S.



The algorithm

1. X0 = A.
2. Repeat Xk+1 = 1

2(Xk + X−1
k ), until convergence.

We really need to compute that matrix inverse (unusual in
numerical linear algebra. . . )



Scaling
If xk � 1, then

xk+1 = 1
2

(
xk + 1

xk

)
≈ 1

2xk ,

and “the iteration is an expensive way to divide by 2” [Higham].
Same if xk � 1: the iteration just multiplies by 2.

If all the eigenvalues of A are very large/small, then the first
iterations just increase/reduce them via repeated
division/multiplications by 2.

Trick: you can replace A with µA for a scalar µ > 0: they have the
same sign. Choose this µ so that eigenvalues ≈ 1.
(Once, or at each step.)



Scaling possibilities
Possibility 1: (determinantal scaling): choose µ = (det A)−1/n, so
that det A = 1. Reduces “mean distance” from 1. Cheap to
compute, since we already need to invert A.
Possibility 2: (spectral scaling): choose µ so that
|λmin(µA)λmax(µA)| = 1. (We can use the power method to
estimate them.)
Possibility 3: (norm scaling): choose µ so that
σmin(µA)σmax(µA) = 1. (Again via the power method for σmin.)

Surprisingly, on a matrix with real eigenvalues Possibility 2 gives
convergence in a finite number of iterations, if done at each step:
the first iteration maps λmin(A) and λmax(A) to eigenvalues with
the same modulus; then the second iteration adds a third
eigenvalue with the same modulus. . .



Stability of the sign iterations
The (floating point) stability analysis is complicated. [Bai Demmel
’98 and Byers Mehrmann He ’97]

Even though the algorithm is only sums and inversions, it is
difficult to assess and propagate the impact of numerical errors in
the first steps (which are the most ill-conditioned ones).

TL;DR The stability analysis reflects the results of our conditioning
analysis: while the sign in itself is unstable, it produces invariant
subspaces as good (numerically) as those computed via a reordered
Schur decomposition.



Inversion-free sign
Suppose that we are given M,N such that A = M−1N. Can we
compute sign(A) without inverting M? Yes.

X1 = 1
2(A + A−1) = 1

2(M−1N + N−1M)

= 1
2M−1(N + MN−1M)

= 1
2M−1(N + M̂−1N̂M)

= 1
2M−1M̂−1(M̂N + N̂M)

= (M̂M) 12(M̂N + N̂M) =: M−1
1 N1.

assuming we can find M̂, N̂ such that MN−1 = M̂−1N̂.
Then the same computations produce M2,N2,M3,N3, . . .



Inversion-free sign
How to find M̂, N̂ such that MN−1 = M̂−1N̂?

M̂M = N̂N, or
[
M̂ N̂

] [ M
−N

]
= 0. We can obtain M̂, N̂ from a

kernel.

Computing this kernel can be much more accurate than inverting
M and/or N, e.g., [

M
−N

]
=


1 0
0 ε
ε 0
0 1

 .

All this is a sort of ‘linear algebra on pencils’: we map N − xM to
N1 − xM1 (one final project on this).


