The matrix sign function

$$
\operatorname{sign}(x)= \begin{cases}1 & \operatorname{Re} x>0 \\ -1 & \operatorname{Re} x<0 \\ \text { undefined } & \operatorname{Re} x=0\end{cases}
$$

Suppose the Jordan form of A is reblocked as

$$
A=\left[\begin{array}{ll}
V_{1} & V_{2}
\end{array}\right]\left[\begin{array}{ll}
J_{1} & \\
& J_{2}
\end{array}\right]\left[\begin{array}{ll}
V_{1} & V_{2}
\end{array}\right]^{-1}
$$

where J_{1} contains all eigenvalues in the LHP (left half-plane) and J_{2} in the RHP. Then,

$$
\operatorname{sign}(A)=\left[\begin{array}{ll}
V_{1} & V_{2}
\end{array}\right]\left[\begin{array}{ll}
-l & \\
& 1
\end{array}\right]\left[\begin{array}{ll}
V_{1} & V_{2}
\end{array}\right]^{-1}
$$

$\operatorname{sign}(A)$ is always diagonalizable with eigenvalues $\pm 1 . \operatorname{sign}(A) \pm I$ gives the projections on the span of the eigenvectors in the RHP/LHP (unstable/stable invariant subspace).

Sign and square root

Useful formula: $\operatorname{sign}(A)=A\left(A^{2}\right)^{-1 / 2}$, where $A^{1 / 2}$ is the principal square root of A (all eigenvalues in the right half-plane), and $A^{-1 / 2}$ is its inverse.
Proof: consider eigenvalues, $\operatorname{sign}(x)=\frac{x}{\left(x^{2}\right)^{1 / 2}}$. (Care with signs.)

Theorem

If $A B$ has no eigenvalues on $\mathbb{R}_{\leq 0}$ (hence neither does $B A$), then

$$
\operatorname{sign}\left[\begin{array}{ll}
0 & A \\
B & 0
\end{array}\right]=\left[\begin{array}{cc}
0 & C \\
C^{-1} & 0
\end{array}\right], \quad C=A(B A)^{-1 / 2}
$$

Proof (sketch) Use $\operatorname{sign}(A)=A\left(A^{2}\right)^{-1 / 2}\left(\right.$ and then $\left.\operatorname{sign}(A)^{2}=I\right)$.
For instance,

$$
\operatorname{sign}\left[\begin{array}{ll}
0 & A \\
1 & 0
\end{array}\right]=\left[\begin{array}{cc}
0 & A^{1 / 2} \\
A^{-1 / 2} & 0
\end{array}\right]
$$

Conditioning

From the theorems on the Fréchet derivative, for a diagonalizable A

$$
\kappa_{a b s}(\operatorname{sign}(A)) \leq \kappa_{2}(V) \frac{2}{\min _{\operatorname{Re} \lambda_{i}<0, \operatorname{Re} \lambda_{j}>0}\left|\lambda_{i}-\lambda_{j}\right|}
$$

This bound tells only part of the truth:

- One one hand, computing $\operatorname{sign}(A)$ is "better" than a full diagonalization: it is not sensitive to close eigenvalues that are far from the imaginary axis.
- On the other hand, when the invariant subspaces are badly separated the bound depends on higher powers of the separation (we will see in the following).

Schur-Parlett method

We can compute $\operatorname{sign}(M)$ with a Schur decomposition. It makes sense to reorder it so that eigenvalues in the LHP come first: $\Lambda(A) \subseteq L H P, \Lambda(B) \subseteq R H P$.

$$
Q^{*} M Q=\left[\begin{array}{ll}
A & C \\
0 & B
\end{array}\right], \quad Q^{*} f(M) Q=\left[\begin{array}{cc}
-1 & Z \\
0 & 1
\end{array}\right]
$$

where Z solves $A Z-Z B=-f(A) C+C f(B)=2 C$.
The condition number of this Sylvester equation depends on $\operatorname{sep}(A, B)$.

Schur-Parlett for the sign

1. Compute $M=Q T Q^{*}$.
2. Reorder Schur decomposition so that eigenvalues in the LHP come first.
3. Solve Sylvester equation for Z.
4. $\operatorname{sign}(M)=Q\left[\begin{array}{cc}-1 & z \\ 0 & 1\end{array}\right] Q^{*}$.
(Matlab example)

Conditioning of the matrix sign

We can use this result to obtain a perturbation bound that explains what happens when $\operatorname{sep}(A, B)$ is small.
Recall our perturbation result for the Sylvester equation: given
$M=\left[\begin{array}{ll}A & C \\ 0 & B\end{array}\right]$ and a perturbation $\tilde{M}=M+E$, there exists X with
$\|X\|_{F}=O\left(\frac{\|E\|_{F}}{\operatorname{sep}(A, B)}\right)$ such that

$$
\left[\begin{array}{cc}
I & 0 \\
-X & I
\end{array}\right](M+E)\left[\begin{array}{cc}
1 & 0 \\
X & I
\end{array}\right]=\left[\begin{array}{cc}
\tilde{A}+\tilde{C} X & \tilde{C} \\
0 & \tilde{B}-X \tilde{C}
\end{array}\right] .
$$

For a sufficiently small perturbation, $\operatorname{sign}(R H S)=\left[\begin{array}{cc}1 & \tilde{Z} \\ 0 & 1\end{array}\right]$, where \tilde{Z} solves

$$
(\tilde{A}+\tilde{C} X) \tilde{Z}-\tilde{Z}(\tilde{B}-X \tilde{C})=2 \tilde{C}
$$

Conditioning of the matrix sign

The coefficients of this equation are a perturbation of size $O\left(\frac{\|E\|_{F}}{\operatorname{sep}(A, B)}\right)$ of those of $A Z-Z B=2 C \Longrightarrow$

$$
\|\tilde{Z}-Z\|_{F}=O\left(\frac{\|E\|_{F}}{\operatorname{sep}(A, B)^{2}}\right)\|Z\|_{F}=O\left(\frac{\|E\|_{F}}{\operatorname{sep}(A, B)^{3}}\right)\|C\|_{F}
$$

So

$$
\|\operatorname{sign}(M+E)-\operatorname{sign}(M)\|_{F}=\left\|\left[\begin{array}{cc}
I & 0 \\
X & I
\end{array}\right]\left[\begin{array}{cc}
l & \tilde{Z} \\
0 & I
\end{array}\right]\left[\begin{array}{cc}
I & 0 \\
-X & I
\end{array}\right]-\left[\begin{array}{ll}
I & Z \\
0 & I
\end{array}\right]\right\|_{F}
$$

is of order $O\left(\frac{\|E\|_{F}}{\operatorname{sep}(A, B)^{3}}\right)$. The sign is extremely sensitive to perturbations, when $\operatorname{sep}(A, B)$ is small.
However, it has a stable invariant subspace $\left[\begin{array}{c}1 \\ -X\end{array}\right]$ at distance only $O\left(\frac{\|E\|_{F}}{\operatorname{sep}(A, B)}\right)$ from that of M (the same as its condition number). So the (numerically unstable) sign is a numerically stable method to compute the stable invariant subspace.

Newton for the matrix sign

Most popular algorithm:

Newton for the matrix sign

$\operatorname{sign}(A)=\lim _{k \rightarrow \infty} X_{k}$, where

$$
X_{k+1}=\frac{1}{2}\left(X_{k}+X_{k}^{-1}\right), \quad X_{0}=A
$$

Suppose A diagonalizable: then we may consider the scalar version of the iteration on each eigenvalue λ :

$$
x_{k+1}=\frac{1}{2}\left(x_{k}+\frac{1}{x_{k}}\right)=\frac{x_{k}^{2}+1}{2 x_{k}}, \quad x_{0}=\lambda .
$$

This is Newton's method on $f(x)=x^{2}-1$, which justifies the name. It has fixed points ± 1, with (locally) quadratic convergence.

Convergence analysis of the scalar iteration

Theorem

The limit of $x_{k+1}=\frac{1}{2}\left(x_{k}+\frac{1}{x_{k}}\right)$ is $\operatorname{sign}\left(x_{0}\right)\left(\right.$ for $\left.\operatorname{Re}\left(x_{0}\right) \neq 0\right)$.
Trick: change of variables (Cayley transform)

$$
y=\frac{x-1}{x+1}, \text { with inverse } x=\frac{y+1}{y-1} .
$$

If $x \in \mathrm{RHP}$, then $|x+1|>|x-1| \Longrightarrow y$ inside the unit disk. If $x \in \operatorname{LHP}$, then $|x-1|>|x+1| \Longrightarrow y$ outside the unit disk. (It's a Padé approximant of $\exp (-2 x)$, with the same property.)
If $y_{k}=\frac{x_{k}-1}{x_{k}+1}$ for each k, then $y_{k+1}=y_{k}^{2}$ (check).

$$
\begin{aligned}
& x_{0} \in \mathrm{RHP} \Longrightarrow\left|y_{0}\right|<1 \Longrightarrow \lim _{k \rightarrow \infty} y_{k}=0 \Longrightarrow \lim _{k \rightarrow \infty} x_{k}=1 \\
& x_{0} \in \mathrm{LHP} \Longrightarrow\left|y_{0}\right|>1 \Longrightarrow \lim _{k \rightarrow \infty} y_{k}=\infty \Longrightarrow \lim _{k \rightarrow \infty} x_{k}=-1
\end{aligned}
$$

Rational approximations of the step function

Let $g(x)=\frac{1}{2}(x+1 / x)$; then its iterates g^{k} are rational approximations of the step function $\operatorname{sign}(x)$ around -1 and 1 .

```
>> syms x
>> g = 1/2*(x + 1/x);
>> g2 = simplify(subs(g, x, g))
>> g3 = subs(g2, x, g)
>> fplot(g, [-2,2])
>> axis([-2 2 -2 2]);
>> hold on
>> fplot(g2, [-2,2])
>> fplot(g3, [-2,2])
```

(They diverge badly around 0 , though.)
Can you recognize the coefficients of $\mathrm{g} 2, \mathrm{~g} 3$?

Theorem

$$
g^{(k)}(x)=\frac{\left((1+x)^{2^{k}}\right)_{\text {even }}}{\left((1+x)^{2^{k}}\right)_{\text {odd }}}=\frac{(1+x)^{2^{k}}+(1-x)^{2^{k}}}{(1+x)^{2^{k}}-(1-x)^{2^{k}}}
$$

This is not-really-a-Padé approximant, because we are asking for it to be accurate (up to order 2^{k}) in both +1 and -1 . However, it can be obtained from

$$
\operatorname{sign}(x)=\frac{\left(x^{2}\right)^{1 / 2}}{x}
$$

by taking a Padé approximant of the principal square root $x^{1 / 2}$.

Convergence analysis of the matrix iteration

A modification of the same proof works in the matrix case. Assume A has no eigenvalues on the imaginary axis; set
$Y_{k}=\left(X_{k}-S\right)\left(X_{k}+S\right)^{-1}, \quad$ with inverse $X_{k}=\left(I-Y_{k}\right)^{-1}\left(I+Y_{k}\right) S$.
All the X_{k} are rational functions of A, so they commute with it and with S.
Analyzing eigenvalues: the inverse exists and $\rho\left(Y_{k}\right)<1$.

$$
Y_{k+1}=\left(X_{k}^{-1}\left(X_{k}^{2}+I-2 S X_{k}\right)\right) X_{k}\left(X_{k}^{2}+I+2 S X_{k}\right)^{-1}=Y_{k}^{2}
$$

$Y_{k} \rightarrow 0$, hence $X_{k} \rightarrow S$.

The algorithm

1. $X_{0}=A$.
2. Repeat $X_{k+1}=\frac{1}{2}\left(X_{k}+X_{k}^{-1}\right)$, until convergence.

We really need to compute that matrix inverse (unusual in numerical linear algebra...)

Scaling

If $x_{k} \gg 1$, then

$$
x_{k+1}=\frac{1}{2}\left(x_{k}+\frac{1}{x_{k}}\right) \approx \frac{1}{2} x_{k},
$$

and "the iteration is an expensive way to divide by 2 " [Higham].
Same if $x_{k} \ll 1$: the iteration just multiplies by 2 .
If all the eigenvalues of A are very large/small, then the first iterations just increase/reduce them via repeated division/multiplications by 2 .

Trick: you can replace A with μA for a scalar $\mu>0$: they have the same sign. Choose this μ so that eigenvalues ≈ 1.
(Once, or at each step.)

Scaling possibilities

Possibility 1: (determinantal scaling): choose $\mu=(\operatorname{det} A)^{-1 / n}$, so that $\operatorname{det} A=1$. Reduces "mean distance" from 1. Cheap to compute, since we already need to invert A.
Possibility 2: (spectral scaling): choose μ so that $\left|\lambda_{\min }(\mu A) \lambda_{\max }(\mu A)\right|=1$. (We can use the power method to estimate them.)
Possibility 3: (norm scaling): choose μ so that $\sigma_{\min }(\mu A) \sigma_{\max }(\mu A)=1$. (Again via the power method for $\sigma_{\text {min }}$.)

Surprisingly, on a matrix with real eigenvalues Possibility 2 gives convergence in a finite number of iterations, if done at each step: the first iteration maps $\lambda_{\text {min }}(A)$ and $\lambda_{\max }(A)$ to eigenvalues with the same modulus; then the second iteration adds a third eigenvalue with the same modulus...

Stability of the sign iterations

The (floating point) stability analysis is complicated. [Bai Demmel '98 and Byers Mehrmann He '97]

Even though the algorithm is only sums and inversions, it is difficult to assess and propagate the impact of numerical errors in the first steps (which are the most ill-conditioned ones).

TL;DR The stability analysis reflects the results of our conditioning analysis: while the sign in itself is unstable, it produces invariant subspaces as good (numerically) as those computed via a reordered Schur decomposition.

Inversion-free sign

Suppose that we are given M, N such that $A=M^{-1} N$. Can we compute $\operatorname{sign}(A)$ without inverting M ? Yes.

$$
\begin{aligned}
X_{1} & =\frac{1}{2}\left(A+A^{-1}\right)=\frac{1}{2}\left(M^{-1} N+N^{-1} M\right) \\
& =\frac{1}{2} M^{-1}\left(N+M N^{-1} M\right) \\
& =\frac{1}{2} M^{-1}\left(N+\hat{M}^{-1} \hat{N} M\right) \\
& =\frac{1}{2} M^{-1} \hat{M}^{-1}(\hat{M} N+\hat{N} M) \\
& =(\hat{M} M) \frac{1}{2}(\hat{M} N+\hat{N} M)=: M_{1}^{-1} N_{1}
\end{aligned}
$$

assuming we can find \hat{M}, \hat{N} such that $M N^{-1}=\hat{M}^{-1} \hat{N}$.
Then the same computations produce $M_{2}, N_{2}, M_{3}, N_{3}, \ldots$

Inversion-free sign

How to find \hat{M}, \hat{N} such that $M N^{-1}=\hat{M}^{-1} \hat{N}$?
$\hat{M} M=\hat{N} N$, or $\left[\begin{array}{ll}\hat{M} & \hat{N}\end{array}\right]\left[\begin{array}{c}M \\ -N\end{array}\right]=0$. We can obtain \hat{M}, \hat{N} from a kernel.

Computing this kernel can be much more accurate than inverting M and/or N, e.g.,

$$
\left[\begin{array}{c}
M \\
-N
\end{array}\right]=\left[\begin{array}{ll}
1 & 0 \\
0 & \varepsilon \\
\varepsilon & 0 \\
0 & 1
\end{array}\right]
$$

All this is a sort of 'linear algebra on pencils': we map $N-x M$ to $N_{1}-x M_{1}$ (one final project on this).

