The matrix square root

Next (and last, for us) matrix function: $A^{1 / 2}$, principal square root.
$A^{1 / 2}$ is well defined unless A has:

- Real eigenvalues $\lambda_{i}<0$, or
- Non-trivial Jordan blocks at $\lambda_{i}=0$ (because $g(x)=x^{1 / 2}$ is not differentiable).

Condition number / sensitivity

The Fréchet derivative of $f(X)=X^{2}$ is

$$
L_{f, X}(E)=X E+E X, \quad \hat{L}=I \otimes X+X^{T} \otimes I
$$

The Fréchet derivative of $g(Y)=Y^{1 / 2}$ is its inverse,

$$
\widehat{L}_{g, Y}=\left(I \otimes Y^{1 / 2}+\left(Y^{1 / 2}\right)^{T} \otimes I\right)^{-1}
$$

with eigenvalues $\frac{1}{\lambda_{i}^{1 / 2}+\lambda_{j}^{1 / 2}}, i, j=1, \ldots, n$.
In particular, g is ill-conditioned for matrices that either:

- have a small eigenvalue (taking $i=j$), or
- have two complex conjugate eigenvalues close to the negative real axis (because then $\lambda_{i}^{1 / 2} \approx a i, \lambda_{j}^{1 / 2} \approx-a i$).

Modified Schur method

Recall: Schur method:

1. Reduce to a triangular T using a Schur form;
2. Compute diagonal of $S=f(T)$;
3. Compute off-diagonal entries from $S T=T S$ Involves a denominator $t_{i i}-t_{j j}$: if it is 0 , we must work on blocks.
In the case of $A^{1 / 2}$, we can use $S^{2}=T$ to get the off-diagonal entries instead:

$$
s_{i i} s_{i j}+s_{i, i+1} s_{i+1, j}+\cdots+s_{i j} s_{j j}=t_{i j}
$$

This involves a denominator $s_{i i}+s_{j j}$: always invertible because $s_{i i}+s_{j j} \in R H P$.

This is (more or less) what Matlab uses, by the way (it does it in a divide-and-conquer way).

Stability of Schur method for sqrtm

Rounding error analysis for

$$
s_{i j}=\frac{t_{i j}-s_{i, i+1} s_{i+1, j}-\cdots-s_{i, j-1} s_{j-1, j}}{s_{i i}+s_{j j}}
$$

(replacing each $s_{i j}$ with the computed $\tilde{s}_{i j}$, and considering errors in all operations) leads to

$$
\tilde{S}^{2}=T+\delta T, \quad|\delta T| \leq|S|^{2} \mathcal{O}(n u)
$$

Combining it with a (backward-stable) Schur factorization and switching to norm, we get that $X=A^{1 / 2}$ is computed with backward error

$$
\left\|\hat{X}^{2}-A\right\|_{F} \leq \mathcal{O}\left(n^{3} \mathrm{u}\right)\|X\|_{F}^{2}
$$

This is weaker than backward stability: there could be cancellation in the product X^{2}, so $\|X\|_{F}^{2}$ is not really the same thing as $\|A\|_{F}$.

Newton method

Newton method on $X^{2}-A$:

$$
X_{k+1}=X_{k}-E, \quad \text { where } E \text { solves } E X_{k}+X_{k} E=X_{k}^{2}-A
$$

Much more expensive than the Schur method: we solve a Sylvster equation at each step (and this requires a Schur form).

Trick: If X_{0} commutes with A (for instance, taking $X_{0}=\alpha l$), then $E=\left(2 X_{0}\right)^{-1}\left(X_{0}^{2}-A\right)$ solves that equation; then E, X_{1} commute with A, too, and so on.

Resulting iteration:
(Modified) Newton iteration (MN)

$$
X_{k+1}=\frac{1}{2}\left(X_{k}+X_{k}^{-1} A\right), \quad X_{0}=\alpha I
$$

At each step, $X_{k} A=A X_{k}$.

Square root and sign

Theorem

Assume A has no eigenvalues in \mathbb{R}^{-}. Then, the MN iteration converges to the principal square root $A^{1 / 2}$ for each starting point $X_{0}=\alpha I$ or $X_{0}=\alpha A$, with $\alpha>0$.

Proof Pre-multiply by $A^{-1 / 2}$, and use commutativity:

$$
A^{-1 / 2} X_{k+1}=\frac{1}{2}\left(A^{-1 / 2} X_{k}+\left(A^{-1 / 2} X_{k}\right)^{-1}\right)
$$

This is the sign iteration! Hence $A^{-1 / 2} X_{k} \rightarrow \operatorname{sign}\left(A^{-1 / 2} X_{0}\right)=I$.
Remark: if A has a negative eigenvalue $\lambda<0$, there is another obstruction: neither version of Newton can converge, because $A^{1 / 2}$ is non-real. To restore convergence, we need to add a small imaginary part to X_{0}.

Theory and practice

Problem All of this holds in exact arithmetic, but the method won't work in practice in machine arithmetic! Try $\operatorname{rng}(4) ; \mathrm{A}=\operatorname{randn}(5) ;$. These two iterations behave quite differently:

True Newton

$$
X_{k+1}=X_{k}-E, \quad \text { where } E \text { solves } E X_{k}+X_{k} E=X_{k}^{2}-A
$$

Modified Newton

$$
X_{k+1}=\frac{1}{2}\left(X_{k}+X_{k}^{-1} A\right)
$$

TN converges, but MN diverges after an initial "pseudo-convergence".

Numerically, the two sequences behave quite differently, and the commutativity property $X_{k} A=A X_{k}$ is lost in MN in a few iterations.

Local stability

The geometric picture The two iterations coincide on the manifold of matrices that commute with $A,\left\{X \in \mathbb{C}^{n \times n}: A X=X A\right\}$, but not on the rest of \mathbb{C}^{n}.
Numerical perturbations take us outside of the manifold, and then they do not coincide anymore.

While TN is quadratically convergent, MN does not even have an stable fixed point in $A^{1 / 2}$: even when started very close to $A^{1 / 2}$, the iteration diverges.

We can prove this formally.

Local stability

Local stability of a fixed point of $X_{k+1}=h\left(X_{k}\right)$ depends on the eigenvalues of its Jacobian.

The Jacobian / Fréchet derivative of $h(X)=\frac{1}{2}\left(X+X^{-1} A\right)$ is

$$
L_{h, X}(E)=\frac{1}{2}\left(E+X^{-1} E X^{-1} A\right)
$$

(use $(X+E)^{-1}-X^{-1}=(X+E)^{-1} E X^{-1}=X^{-1} E X^{-1}+o(\|E\|)$).
Hence $L_{h, A^{1 / 2}}=\frac{1}{2}\left(E+A^{-1 / 2} E A^{1 / 2}\right)$, or
$\hat{L}_{h, A^{1 / 2}}=\frac{1}{2}\left(I+\left(A^{1 / 2}\right)^{T} \otimes A^{-1 / 2}\right)$.
It has eigenvalues $\frac{1}{2}+\frac{1}{2} \lambda_{i}^{1 / 2} \lambda_{j}^{-1 / 2}$, where λ_{i} are the eigenvalues of A.

It is easy to construct examples in which $L_{h, A^{1 / 2}}$ has eigenvalues with modulus >1, hence $A^{1 / 2}$ is an unstable fixed point of $h(X)$.

Denman-Beavers iteration

However, the stability properties are significantly different for slight variations of the modified Newton's method.

Setting $Y_{k}=A^{-1} X_{k}$, we can get

Denman-Beavers iteration [Denman-Beavers, '76]

$$
\begin{aligned}
& X_{k+1}=\frac{1}{2}\left(X_{k}+Y_{k}^{-1}\right) \\
& Y_{k+1}=\frac{1}{2}\left(Y_{k}+X_{k}^{-1}\right)
\end{aligned}
$$

(It corresponds to using the relation with the matrix sign and using
Newton for the matrix sign to compute sign $\left(\left[\begin{array}{ll}0 & A \\ 1 & 0\end{array}\right]\right)$.)

Local stability of the DB iteration

Theorem

The $D B$ iteration satisfies $\lim \left(X_{k}, Y_{k}\right)=\left(A^{1 / 2}, A^{-1 / 2}\right)$, and it is locally stable.

We have

$$
L_{D B,(X, Y)}\left(\left[\begin{array}{l}
E \\
F
\end{array}\right]\right)=\frac{1}{2}\left[\begin{array}{l}
E-Y^{-1} F Y^{-1} \\
F-X^{-1} E X^{-1}
\end{array}\right]
$$

All $(X, Y)=\left(M, M^{-1}\right)$ are fixed points, and in these the Jacobian is idempotent, i.e., $\left(K_{D B,\left(B, B^{-1}\right)}\right)^{2}=K_{D B,\left(B, B^{-1}\right)}$.
Hence its eigenvalues are 0,1 , and all the Jordan blocks are simple \Longrightarrow bounded powers \Longrightarrow local stability.

Other variants are available [Higham book, Ch. 6].

