
The matrix square root
Next (and last, for us) matrix function: A1/2, principal square root.

A1/2 is well defined unless A has:
I Real eigenvalues λi < 0, or
I Non-trivial Jordan blocks at λi = 0 (because g(x) = x1/2 is

not differentiable).



Condition number / sensitivity
The Fréchet derivative of f (X ) = X 2 is

Lf ,X (E ) = XE + EX , L̂ = I ⊗ X + XT ⊗ I.

The Fréchet derivative of g(Y ) = Y 1/2 is its inverse,

L̂g ,Y = (I ⊗ Y 1/2 + (Y 1/2)T ⊗ I)−1

with eigenvalues 1
λ

1/2
i +λ1/2

j
, i , j = 1, . . . , n.

In particular, g is ill-conditioned for matrices that either:
I have a small eigenvalue (taking i = j), or
I have two complex conjugate eigenvalues close to the negative

real axis (because then λ1/2
i ≈ ai , λ1/2

j ≈ −ai).



Modified Schur method
Recall: Schur method:
1. Reduce to a triangular T using a Schur form;
2. Compute diagonal of S = f (T );
3. Compute off-diagonal entries from ST = TS

Involves a denominator tii − tjj : if it is 0, we must work on
blocks.

In the case of A1/2, we can use S2 = T to get the off-diagonal
entries instead:

siisij + si ,i+1si+1,j + · · ·+ sijsjj = tij .

This involves a denominator sii + sjj : always invertible because
sii + sjj ∈ RHP.

This is (more or less) what Matlab uses, by the way (it does it in a
divide-and-conquer way).



Stability of Schur method for sqrtm
Rounding error analysis for

sij = tij − si ,i+1si+1,j − · · · − si ,j−1sj−1,j
sii + sjj

.

(replacing each sij with the computed s̃ij , and considering errors in
all operations) leads to

S̃2 = T + δT , |δT | ≤ |S|2O(nu).

Combining it with a (backward-stable) Schur factorization and
switching to norm, we get that X = A1/2 is computed with
backward error

‖X̂ 2 − A‖F ≤ O(n3u)‖X‖2F ,

This is weaker than backward stability: there could be cancellation
in the product X 2, so ‖X‖2F is not really the same thing as ‖A‖F .



Newton method
Newton method on X 2 − A:

Xk+1 = Xk − E , where E solves EXk + XkE = X 2
k − A.

Much more expensive than the Schur method: we solve a Sylvster
equation at each step (and this requires a Schur form).

Trick: If X0 commutes with A (for instance, taking X0 = αI), then
E = (2X0)−1(X 2

0 − A) solves that equation; then E ,X1 commute
with A, too, and so on.

Resulting iteration:

(Modified) Newton iteration (MN)

Xk+1 = 1
2(Xk + X−1

k A), X0 = αI.

At each step, XkA = AXk .



Square root and sign

Theorem
Assume A has no eigenvalues in R−. Then, the MN iteration
converges to the principal square root A1/2 for each starting point
X0 = αI or X0 = αA, with α > 0.

Proof Pre-multiply by A−1/2, and use commutativity:

A−1/2Xk+1 = 1
2
(
A−1/2Xk + (A−1/2Xk)−1

)
.

This is the sign iteration! Hence A−1/2Xk → sign(A−1/2X0) = I.

Remark: if A has a negative eigenvalue λ < 0, there is another
obstruction: neither version of Newton can converge, because A1/2

is non-real. To restore convergence, we need to add a small
imaginary part to X0.



Theory and practice
Problem All of this holds in exact arithmetic, but the method
won’t work in practice in machine arithmetic! Try
rng(4); A = randn(5);. These two iterations behave quite
differently:

True Newton
Xk+1 = Xk − E , where E solves EXk + XkE = X 2

k − A.

Modified Newton

Xk+1 = 1
2(Xk + X−1

k A).

TN converges, but MN diverges after an initial
“pseudo-convergence”.
Numerically, the two sequences behave quite differently, and the
commutativity property XkA = AXk is lost in MN in a few
iterations.



Local stability
The geometric picture The two iterations coincide on the manifold
of matrices that commute with A, {X ∈ Cn×n : AX = XA}, but
not on the rest of Cn.
Numerical perturbations take us outside of the manifold, and then
they do not coincide anymore.

While TN is quadratically convergent, MN does not even have an
stable fixed point in A1/2: even when started very close to A1/2,
the iteration diverges.

We can prove this formally.



Local stability
Local stability of a fixed point of Xk+1 = h(Xk) depends on the
eigenvalues of its Jacobian.

The Jacobian / Fréchet derivative of h(X ) = 1
2(X + X−1A) is

Lh,X (E ) = 1
2(E + X−1EX−1A)

(use (X +E )−1−X−1 = (X +E )−1EX−1 = X−1EX−1 + o(‖E‖)).

Hence Lh,A1/2 = 1
2(E + A−1/2EA1/2), or

L̂h,A1/2 = 1
2

(
I + (A1/2)T ⊗ A−1/2

)
.

It has eigenvalues 1
2 + 1

2λ
1/2
i λ

−1/2
j , where λi are the eigenvalues of

A.

It is easy to construct examples in which Lh,A1/2 has eigenvalues
with modulus > 1, hence A1/2 is an unstable fixed point of h(X ).



Denman–Beavers iteration
However, the stability properties are significantly different for slight
variations of the modified Newton’s method.

Setting Yk = A−1Xk , we can get

Denman–Beavers iteration [Denman–Beavers, ’76]

Xk+1 = 1
2(Xk + Y−1

k ),

Yk+1 = 1
2(Yk + X−1

k ),

(It corresponds to using the relation with the matrix sign and using

Newton for the matrix sign to compute sign
([

0 A
I 0

])
.)



Local stability of the DB iteration

Theorem
The DB iteration satisfies lim(Xk ,Yk) = (A1/2,A−1/2), and it is
locally stable.

We have
LDB,(X ,Y )(

[
E
F

]
) = 1

2

[
E − Y−1FY−1

F − X−1EX−1

]
All (X ,Y ) = (M,M−1) are fixed points, and in these the Jacobian
is idempotent, i.e., (KDB,(B,B−1))2 = KDB,(B,B−1).

Hence its eigenvalues are 0, 1, and all the Jordan blocks are simple
=⇒ bounded powers =⇒ local stability.

Other variants are available [Higham book, Ch. 6].


