
Functions of large-scale matrices
How do we compute f (A) if A is large and sparse? Huge recent
research topic.

Most of the time, one wants f (A)b rather than f (A), because f (A)
is full (unless f and A are special, e.g., square of a banded matrix).
Some of the main techniques:
1. Replace f with an approximating polynomial/rational function

on a region U that includes the spectrum of A (how?).
2. Contour integration:

1
2πi

∫
Γ

f (z)(zI − A)−1dz ≈
n∑

k=1
wk f (xk)(xk I − A)−1.

3. Ad-hoc methods, involving e.g. discretization of differential
equations: for instance, exp(A)b = v(1) where v̇(t) = Av(t),
v(0) = b.

(And actually 2. and 3. are special cases of 1.)



Arnoldi for matrix functions
Another possibility with the “Swiss-army knife” algorithm for large
matrices: Arnoldi.

Let us recap Arnoldi (with matrix functions in mind).

Krylov subspace

Kn(A, b) = span(b,Ab,A2b, . . . ,An−1b)
= {p(A)b : p polynomial of degree < n}.

Suppose we have computed the vectors b,Ab,A2b, . . . ,An−1b,Anb
explicitly.
This gives us a “recipe” to evaluate Av for any v ∈ Kn(A, b):

Av = A(α0b + α1Ab + · · ·+ αn−1An−1b) = p(A)b
= (α0Ab + α1A2b + · · ·+ αn−1Anb) = Ap(A)b.



Towards Arnoldi
This recipe often is not satisfying: b,Ab,A2b, . . .An−1b converge
to the leading eigenvector of A (power method), so when n gets
large these vectors tend to be parallel (and often also huge/small).

Some tasks, e.g. determining α0, . . . , αn−1 given v , are hopelessly
ill-conditioned:

Vn =
[
b Ab . . . An−1b

]
, a =


α0
α1
...

αn−1

 = V +
n v .

(Moore–Penrose pseudoinverse).

It would be much better to work with an orthogonal basis of
Im Vn = Kn(A, b), e.g., the Q factor of V = QR: then the
coordinates are simply a = V ∗n v .



Arnoldi as “recipe”
The “recipe” for Av comes from the columns of

A
[
b Ab . . . An−1b

]
=
[
b Ab . . .An−1b Anb

]


0
1 . . .

. . . 0
1 0

1


.

With (nested) orthonormal bases of Vn and Vn+1, it becomes

A
[
v1 v2 . . . vn

]
︸ ︷︷ ︸

Vn

=
[
v1 v2 . . . vn vn+1

]
︸ ︷︷ ︸

vn+1

Hn

for a certain Hn ∈ C(n+1)×n (to be determined).



Arnoldi iteration
We can compute the v ’s iteratively, one after the other: suppose
we already have v1, . . . , vj . Then,

Avj = v1α1,j + v2α2,j + · · ·+ vjαj−1,j + vj+1αj+1,j

Thanks to orthogonality, we can compute and subtract
v∗i Avj = αi ,j for i = 1, . . . , j (Gram–Schmidt process), and we are
left with vj+1αj+1,j :

w = A*V(:,j);
for i = 1:j

alpha(i,j) = V(:,i)’ * w;
w = w - V(:,i) * alpha(i,j);

end
alpha(j+1,j) = norm(w);
V(:,j+1) = w / alpha(j+1,j);

Starting point: v1 = b
‖b‖ .



Remarks on Arnoldi
This algorithm computes nested bases for the Krylov subspaces:

Kj(A, b) = Im
[
v1 v2 . . . vj

]
, j = 1, 2, . . .

Why did we start with w = Avj and not another vector? Because
this way we can prove that αj+1,j 6= 0.

Lemma
Suppose Vj has full column rank (so that the α’s are uniquely
determined). Then, vj ∈ Kj(A, b) \ Kj−1(A, b).

Proof Induction: assume this holds up to step j . Then, vj = p(A)b
with p of degree exactly j − 1. Hence, w = Avj = q(A)b with
q(A) = Ap(A) of degree exactly j , and the same holds for
vj+1 = w −

∑j
i=1 αijvj (since we are subtracting polynomials of

degree < j).



Arnoldi: the ‘recipe’
Gathering all the relations involving the Avj in a matrix, we get

A
[
v1 . . . vn

]
︸ ︷︷ ︸

Vn

=
[
v1 . . . vn+1

]
︸ ︷︷ ︸

Vn+1



α1,1 α1,2 α1,3 . . . α1,n
α1,2 α2,2 α2,3 . . . α2,n
0 α3,2 α3,3 . . . α3,n

0 0 . . . . . . ...
...

... . . . . . . αn,n
0 . . . . . . 0 αn+1,n


︸ ︷︷ ︸

Hn

.

When αn+1,n = 0 (breakdown), AVn = VnHn, where Hn is Hn
without the last row. This is an invariant subspace relation.

Note that Hn = V ∗n AVn.



Formula for p(A)b

Lemma
For all polynomials with deg p < n,

p(A)b = Vnp(Hn)V ∗n b = Vnp(Hn)e1‖b‖.

Proof: it is sufficient to show that Ajb = VnH j
nV ∗n b for j < n.

VnH j
nV ∗n = VnV ∗n AVnV ∗n A · · ·VnV ∗n AVnV ∗n AVnV ∗n b

Let us start from the right. VnV ∗n is the orthogonal projection
matrix onto the Krylov space. Since b ∈ Kn(A, b), VnV ∗n b = b.
Now the rightmost part reads VnV ∗n Ab; but this equals Ab because
Ab ∈ Kn(A, b), and so on.



Arnoldi, matrix functions, and polynomial approximations
Idea: let us take c = Vnf (Hn)e1‖b‖ as an approximation of f (A).
This approximation is exact when f is a polynomial of degree < n.
Moreover,

c = Vnf (Hn)e1‖b‖ = Vnp̃(Hn)e1‖b‖ = p̃(A)b,

where p̃ is the interpolating polynomial to f on the spectrum of Hn
(not that of A!)
Known behaviour from Arnoldi theory: for many matrices, the
eigenvalues of Hn (Ritz values) approximate the outermost
eigenvalues of A.
What is going on: for a diagonalizable A = W ΛW−1, we are
computing c = W p̃(λ)W−1b instead of f (A)b = Wf (λ)W−1b;
I for eigenvalues “on the outside”, f (λ) ≈ p̃(λ) because

f (µ) = p̃(µ) for a nearby Ritz value µ ∈ Λ(H).
I for eigenvalues “on the inside”, they may be different, but

hopefully |f (λ)| is smaller and does not contribute too much.



A more precise error bound
Theorem
Let A be normal, and W(A) ⊆ C be the convex hull of Λ(A). Let
p(x) be the best-approximation polynomial to f in W(A), i.e., the
one that minimizes δ = maxx∈W(A)|f (x)− p(x)|. Then,

‖f (A)b − c‖ ≤ 2δ‖b‖.

(And, magically, Arnoldi does all this without knowing p!)
Proof Note that the eigenvalues of Hn are in W(A): indeed,
Hx = λx =⇒ x∗Hx

x∗x = x∗V ∗AVx
x∗x is a Rayleigh quotient for A.

Since the Arnoldi approximation is exact on p,

‖f (A)b − c‖ = ‖f (A)b − Vnf (Hn)V ∗n b‖
= ‖(f − p)(A)b − Vn(f − p)(Hn)V ∗n b‖
≤ ‖(f − p)(A)b‖+ ‖Vn(f − p)(Hn)V ∗n b‖
≤ δ‖b‖+ δ‖b‖.



Note
A similar bound can be obtained also for non-normal A, by defining
the field of values or numerical range

W(A) =
{x∗Ax

x∗x

}
= {set of Rayleigh quotients of A},

(which in general is larger than hull(Λ(A))), and using

Crouzeix-Palencia theorem
There is a universal constant 2 ≤ C ≤ 2

√
2 (its optimal value is

still an open problem) such that for any matrix A and function f

‖f (A)‖ ≤ C max
x∈W(A)

|f (x)|.



Arnoldi variants [Güttel ’13]

What if f takes its larger values at some internal point of the
spectrum of A, e.g., f (x) = 1

x and A has both positive and
negative eigenvalues (or complex values not all in the same
half-plane)?
Idea: change the Arnoldi iteration!
I Extended Arnoldi: constructs an orthonormal basis for
{p(A)b : p = α−n1x−n1 + α−n1+1x−n1+1 + · · ·+ αn2−1xn2−1}
= A−n1Kn1+n2(A, b) = Kn1+n2(A,A−n1b);
(Laurent polynomials)

I Rational Arnoldi: given qn−1(z) of degree n− 1, o.n. basis for
{r(A)b : r(z) = p(z)/qn−1(z), p any polynomial of degree < n}
= qn−1(A)−1Kn(A, b) = Kn(A, qn−1(A)−1b);
(rational functions with fixed denominator qn−1(z))

can be constructed, e.g., extended Krylov, i.e., Krylov on A and
A−1 ‘at the same time’, or rational Krylov, which takes poles
µ1, µ2, . . . , µk ∈ C as input and constructs a basis of

{
k∑

j=1
αj(A− µj)−1b : α1, α2, . . . , αk ∈ C},

i.e., all vectors of the form r(A)b, where r(x) is a rational function
with poles µ1, . . . , µk .



Extended Arnoldi
Idea: at each step, start with suitable continuation vector
v ∈ Im Vj . Compute
I w = A−1v if you want to add a negative power of z to your

space `(A)b
I w = Av if you want to add a positive power of z to your

space of Laurent polynomials of the form `(A)b,
and then orthogonalize it w.r.t. v1, . . . , vj .
Only detail: the continuation vector must ensure that αj+1,j 6= 0.

A working choice: take the vk from the last iteration k with a
power of the same kind (positive or negative).

Putting together all orthogonalization relations yields a relation of
the form

AVn+1Kn = Vn+1Hn

This provides a ‘recipe’ to compute products Ax for every
x ∈ Im Vn.



Rational Arnoldi
Similar idea. At each step j , we start from a pole polynomial
qj−1(z) = (z − ξ1)(z − ξ2) . . . (z − ξj−1) of degree j − 1, and an
orthonormal basis for

qj−1(A)−1Kj(A, b) =
{

r(A)b : r(z) = p(z)
qj−1(z) , deg(p) < j

}
.

We extend the space by adding a new pole ξj (possibly repeated).

We start from a suitable continuation vector v (typically one of the
vi), compute w = (A− ξj I)−1v , and orthogonalize it against all
previous basis vectors vi .

With some minor changes, one can allow for poles ξj equal to ∞
(i.e., “traditional” Arnoldi).

(Usually one takes the last pole ξn to be ∞ (a traditional Arnoldi
step), so the last row of Kn is 0 and An = HnK−1

n .)



Arnoldi approximation
Once one has computed a suitable approximation space Vn,

f (A)b ≈ Vnf (An)V ∗n b, An = V ∗n AVn,

and the approximation is exact on Laurent polynomials (resp.
rational functions with fixed denominators).

Analogous versions of the previous approximation results hold for
extended/rational Arnoldi hold, replacing polynomials with Laurent
polynomials or rational functions with fixed denominators. (Indeed,
in the proofs we basically used only the property An = V ∗n AVn and
the exactness property.)



Costs and benefits
Computational cost:
I Extended Arnoldi: typically computed with a (sparse) LU

factorization of A, once, so that we can reuse it for each
product with A−1.

I Rational Arnoldi: typically computed with one sparse direct
solve at each step. More degrees of freedom due to choice of
poles. (Adaptively? From interpolation theory?)

Both are more expensive than Arnoldi.

Key issues: how much better is rational interpolation (for your f
and A) than polynomial interpolation, so that the trade-off is
convenient? How to choose good poles ξj?

Lots of current research on it. No details here. (I am not an expert
myself!)
More detail in the review paper [Güttel ’13].



Matlab examples
Using Rktoolbox by S. Güttel http://guettel.com/rktoolbox/.

>> rng(0); A = randn(100) + 10*eye(100);
>> v = eig(A); plot(real(v), imag(v), ’x’);
>> b = randn(size(A,1), 1);
>> poles = -20:-1;
>> [V, K, H] = rat_krylov(A, b, poles);
>> A0 = K(1:end-1,:) \ H(1:end-1,:);
>> v = eig(A); w = eig(A0);
>> plot(real(v), imag(v), ’x’, real(w), imag(w), ’o’);
>> F = V(:, 1:end-1)*expm(A0) * V(:, 1:end-1)’;
>> norm(expm(A) - F) / norm(expm(A))

Try again with other choice of poles, a symmetric matrix, regular
Arnoldi (poles=∞), extended Arnoldi (poles=∞ and 0), . . .

http://guettel.com/rktoolbox/

