Lyapunov equations

Lyapunov equation

$$
\begin{equation*}
A^{*} X+X A+Q=0, \quad Q=Q^{*} \succeq 0 \tag{L}
\end{equation*}
$$

Special case of the Sylvester equation.
It has a unique solution whenever $\Lambda(A) \cup \Lambda\left(-A^{*}\right)=\emptyset$. Important case: when $\Lambda(A) \subseteq L H P$ (open left half-plane).

Lemma

Suppose (L) has a unique solution X; then X is Hermitian.
Proof: transpose everything; X^{*} is another solution.

Lyapunov equation: positivity

Lemma

Suppose A has eigenvalues in the (open) LHP. Then, $Q \succeq 0$ implies $X \succeq 0$, and $Q \succ 0$ implies $X \succ 0$.

Proof Check that

$$
X=\int_{0}^{\infty} e^{A^{*} t} Q e^{A t} \mathrm{~d} t
$$

$\left(\frac{\mathrm{d}}{\mathrm{d} t} e^{A^{*} t} Q e^{A t}=A^{*} e^{A^{*} t} Q e^{A t}+e^{A^{*} t} Q e^{A t} A\right.$, then integrate both sides).

Lemma

Suppose $Q \succ 0$ and $X \succ 0$. Then, A has eigenvalues in the (open) LHP.

Proof Let $A v=\lambda v$; then $0<v^{*} Q v=\ldots$

Relation to linear dynamical systems

Alternative statement: to prove that A has all its eigenvalues in the LHP, it is sufficient to exhibit $X \succ 0$ such that $A^{*} X+X A \prec 0$.

Alternative way to see it: when is the dynamical system $\dot{x}(t)=A x(t)$ asymptotically stable, i.e., $x(t) \rightarrow 0$ for every x_{0} ? Differential equation theory: when $\Lambda(A) \subset L H P$.
Lyapunov's way to prove it: it is sufficient to exhibit $X \succ 0$ such that $A^{*} X+X A \prec 0$. Once you find it, you can define the energy function $V(t)=x^{*} X x$; then $\frac{d}{d t} V(x(t)) \leq 0$, so $x(t)$ cannot escape the (finite) region $\left\{x: V(x) \leq V\left(x_{0}\right)\right\}$. Strengthening slightly the argument, one gets $x(t) \rightarrow 0$ if $X \succ 0$.
Lyapunov (1857-1918) did not have computers, so at that time exhibiting a solution to that equation was typically easier than computing all the eigenvalues of a nonsymmetric matrix A.

Discrete-time version

Many of these results also come in a 'discrete-time' variant; in this case:

Stein's equation

A has all its eigenvalues in the (open) unit disc iff

$$
X-A^{*} X A=Q, \quad Q \succ 0
$$

has a solution $X \succ 0$.
Related to the stability of the discrete-time system $x_{t+1}=A x_{t}$.
Can be solved with a Bartels-Stewart-like method.
(Skipping some details: a certain quantity has to be cached during the computation so that the cost is $O\left(n^{3}\right)$)
(Actually B-S works for all equations of the kind $A X B+C X D=E$, using QZ factorizations of (A, C) and $\left(D^{T}, B^{T}\right)$.)

Discrete-time version

Discrete-time version of the integral formula:

If A has all its eigenvalues inside the (open) unit disc then

$$
X=\sum_{k=0}^{\infty}\left(A^{*}\right)^{k} Q A^{k}
$$

Proof $\left(I-A^{T} \otimes A^{*}\right) \operatorname{vec}(X)=\operatorname{vec}(Q)$, then use the Neumann series for the inverse.

