Example: control theory [Datta, Ch. 5]

Control theory (important subject in engineering) is the study of dynamical systems + controllers.

Example can we keep an 'inverted pendulum' of length ℓ in the unstable upright position ($12 \mathrm{o}^{\prime}$ clock) by applying a steering force?
State $x(t)=\left[\begin{array}{c}\theta \\ \dot{\theta}\end{array}\right]$, where θ is the angle formed by the pendulum (12 o' clock $\leftrightarrow \theta=0$).

Free system equations:

$$
\dot{x}=\left[\begin{array}{l}
\dot{\theta} \\
\ddot{\theta}
\end{array}\right]=\left[\begin{array}{c}
x_{2} \\
g \ell \sin x_{1}
\end{array}\right] \approx\left[\begin{array}{c}
x_{2} \\
g \ell x_{1}
\end{array}\right]=\left[\begin{array}{cc}
0 & 1 \\
g \ell & 0
\end{array}\right] x .
$$

The system is not stable: $A=\left[\begin{array}{cc}0 & 1 \\ g \ell & 0\end{array}\right]$ has one positive and one negative eigenvalue.

Example: controlling an inverted pendulum

Now we apply an additional steering force u (control):

$$
\dot{x}=A x+B u, \quad B=\left[\begin{array}{l}
0 \\
1
\end{array}\right] .
$$

Can we choose $u(t)$ so that the system is stable? Yes - even better: we can choose one of the form $u(t)=F x(t), F \in \mathbb{R}^{1 \times 2}$

We can literally build a contraption (engine + camera) that sets the appropriate force according to the current state only (feedback control). $u=\left[\begin{array}{ll}f_{1} & f_{2}\end{array}\right] \times$ gives the closed-loop system

$$
\dot{x}=(A+B F) x=\left[\begin{array}{cc}
0 & 1 \\
f_{1}+g \ell & f_{2}
\end{array}\right] x .
$$

Choosing f_{1}, f_{2}, we can move the eigenvalues of $A+B F$ arbitrarily.
Remark: $f_{2}=0$ (observing only position θ) isn't enough!

Other examples

Heat equation: in a bar of uniform material (the segment $[0,1]$), one endpoint 1 is kept at constant temperature $0^{\circ} \mathrm{C}$, and we apply a variable temperature (amount of 'heat') $u(t)$ at the other endpoint 0 .
The temperature $x(y, t)$ at position y and time t follows

$$
\frac{\partial}{\partial t} x(y, t)=\alpha \frac{\partial^{2}}{\partial y^{2}} x(y, t), \quad x(0, t)=u(t), x(1, t)=0
$$

We discretize in space: $x(t)$ is a vector of temperatures at equi-spaced points $h, 2 h, \ldots, n h=1$.

$$
\frac{d}{d t} x(t)=A x(t)+B u(t)
$$

$A=\frac{\alpha}{h^{2}} \operatorname{tridiag}(-1,2,-1), B=-\frac{\alpha}{h^{2}} e_{1}$.
Other examples in [Datta, Ch. 5], e.g. electrical circuits.
Video: triple pendulum on a cart, e.g., youtu.be/cyN-CRNrb3E.

The general setup

$$
\dot{x}=A x+B u, \quad A \in \mathbb{R}^{n \times n}, B \in \mathbb{R}^{n \times m} .
$$

Q1 Can we stabilize the system around 0, i.e., choose $u(t)=F x(t)$ so that $A+B F$ is stable?
Q2 Can we control the system, i.e., choose $u(t)$ to reach a given value of $x\left(t_{F}\right)$?
Not always: counterexample:

$$
A=\left[\begin{array}{cc}
A_{11} & A_{12} \\
0 & A_{22}
\end{array}\right], \quad B=\left[\begin{array}{c}
B_{1} \\
0
\end{array}\right] .
$$

No matter what we choose, we cannot change the dynamics of the second block of variables. If A_{22} has eigenvalues outside the LHP, there is nothing we can do.

Controllability

This structure may be 'hidden' behind a change of basis, for instance $A \leftarrow M A M^{-1}, B \leftarrow M B$.

How do we check for it? Krylov spaces:

The pair (A, B) is called controllable if

$$
\operatorname{span}\left(B, A B, \ldots, A^{k} B, \ldots\right)=\mathbb{R}^{n}
$$

Controllability [Datta, Ch. 6, with more streamlined proofs]

Definition

$(A, B) \in \mathbb{R}^{n \times n} \times \mathbb{R}^{n \times m}$ is controllable iff $K(A, B)=\mathbb{R}^{n}$, where

$$
K(A, B):=\operatorname{span}\left(B, A B, A^{2} B, \ldots\right)
$$

It is enough to stop at $A^{n-1} B$, because A^{n} is a linear combination of I, A, \ldots, A^{n-1} (Cayley-Hamilton theorem).

Lemma

There exists a nonsingular $M \in \mathbb{R}^{n \times n}$ such that

$$
M^{-1} A M=\left[\begin{array}{cc}
A_{11} & A_{12} \\
0 & A_{22}
\end{array}\right], \quad M^{-1} B=\left[\begin{array}{c}
B_{1} \\
0
\end{array}\right]
$$

(with $A_{11} \in \mathbb{R}^{n_{1} \times n_{1}}, A_{22} \in \mathbb{R}^{n_{2} \times n_{2}}, B_{1} \in \mathbb{R}^{n_{1} \times m}$, and $n_{2} \neq 0$) if and only if (A, B) is not controllable.

Proof

\Rightarrow Partition $M=\left[\begin{array}{ll}M_{1} & M_{2}\end{array}\right]$ conformably. Then,
$A^{k} B=M\left[\begin{array}{c}A_{11}^{k} B_{1} \\ 0\end{array}\right]=M_{1} A_{11}^{k} B_{1}$, so $K(A, B) \subseteq \operatorname{Im} M_{1}$.
\Leftarrow Let the columns of M_{1} be a basis of $K(A, B)$, and complete it to a nonsingular $M=\left[\begin{array}{ll}M_{1} & M_{2}\end{array}\right]$. Then, $M^{-1} A M$ is block triangular (because M_{1} is A-invariant), and $M^{-1} B$ has zeros in the second block row (because the columns of B lie in $\operatorname{Im} M_{1}$).
(Linear algebra characterization: $K(A, B)$ is the smallest A-invariant subspace that contains B. It's the space V_{n} that we obtain after we encounter breakdown in Arnoldi.)

Kalman decomposition

Kalman decomposition

For every matrix pair $(A, B) \in \mathbb{R}^{n \times n} \times \mathbb{R}^{n \times m}$, there is a change of basis M such that

$$
M^{-1} A M=\left[\begin{array}{cc}
A_{11} & A_{12} \\
0 & A_{22}
\end{array}\right], \quad M^{-1} B=\left[\begin{array}{c}
B_{1} \\
0
\end{array}\right]
$$

with $\left(A_{11}, B_{1}\right)$ controllable.
Proof: as above: take M_{1} such that its columns are a basis of the 'controllable space' $K(A, B)$, then complete it to a basis of \mathbb{R}^{n}.

Other controllability criteria

Popov (or Hautus) criterion

(A, B) controllable $\Longleftrightarrow \operatorname{rank}[A-z I, B]=n$ for all $z \in \Lambda(A)$ $\Longleftrightarrow \operatorname{rank}[A-z I, B]=n$ for all $z \in \mathbb{C}$.

It is enough to test the condition on $z \in \Lambda(A)$, because for all other z we already have $\operatorname{rank}(A-z l)=n$.

Proof

\Leftarrow If (A, B) is not controllable, write it in a Kalman decomposition, then for $z \in \Lambda\left(A_{22}\right)$ the bottom part does not have full rank.
\Rightarrow If $v^{*}[A-\lambda I, B]=0$ for some $\lambda \in \Lambda(A)$, then up to a change of basis we can assume $v=e_{n}$, and this implies (A, B) are in a Kalman decomposition (with $n_{2}=1$).

Controllability Gramian

(A, B) controllable iff

$$
W=\int_{0}^{t} \exp (\tau A) B B^{*} \exp (\tau A)^{*} \mathrm{~d} \tau \succ 0
$$

for $t>0$ (one or all, equivalently).

Proof

\Leftarrow suppose (A, B) is not controllable. Then, for any t
$\operatorname{Im} X \subseteq K(A, B)$, because $\operatorname{Im} \exp (\tau A) B x \in K(A, B)$.
\Rightarrow suppose instead that for some $v \neq 0$ and $t>0$

$$
0=v^{*} W v=\int_{0}^{t} v^{*} e^{A t} B B^{*} e^{A^{*} t} v \mathrm{~d} t \Longrightarrow \Phi(t)=v^{*} e^{A t} B \equiv 0
$$

Evaluate $0=\Phi(0)=\Phi^{\prime}(0)=\Phi^{\prime \prime}(0)=\ldots$, we get
$0=v^{*} B=v^{*} A B=v^{*} A^{2} B=\ldots$
Corollary If $\Lambda(A) \subseteq L H P$, then the solution of $A W+W A^{*}+B B^{*}=0$ satisfies $W \succ 0$ iff (A, Q) controllable.

Controllable means controllable

Theorem

(A, B) controllable iff for any "target" (t_{F}, x_{F}) (typycally, $x_{F}=0$) we can choose a control u such that the system

$$
\dot{x}(t)=A x(t)+B u(t), \quad x(0)=x_{0}
$$

has $x\left(t_{F}\right)=x_{F}$.

Proof

\Rightarrow If (A, B) is not controllable, then $x(t) \in K(A, B)$ for all t.
\Leftarrow Recall that (solution of linear differential eqns)

$$
x(t)=\exp (A t) x_{0}+\int_{0}^{t} \exp (A(t-\tau)) B u(\tau) \mathrm{d} \tau
$$

Just take $u(t)=B^{*} \exp (A(t-\tau))^{*} y$ (for a fixed vector y) to get

$$
x\left(t_{F}\right)=\exp \left(A t_{F}\right) x_{0}+W y
$$

which can 'reach' arbitrary vectors since $W \succ 0$ is nonsingular.

Stabilizability

Weaker condition: sometimes even if a system is not controllable we can still ensure that the solution converges to 0 via a feedback control.

Definition

(A, B) is stabilizable if in its Kalman decomposition A_{22} is stable (i.e., $\Lambda\left(A_{22}\right) \subseteq L H P$).

Note that this definition is well-posed even if M is non-unique: the eigenvalues of A_{11} are the eigenvalues of $\left.A\right|_{K(A, B)}$, and those of A_{22} are the remaining eigenvalues of A (counting with their algebraic multiplicity).

Hautus test: (A, B) stabilizable $\Longleftrightarrow \operatorname{rank}(A-z l, B)=n$ for all $z \notin L H P$.

How to test controllability numerically?

Numerically, almost any (A, B) is controllable: things are rarely zero. Anyway, various options:

- Run a (block) Krylov algorithm, and check if it breaks down early.
- Compute $\Lambda(A)$ and check that $\operatorname{rank}[A-z l, B]=n$ for each $z \in \Lambda(A)$.
- If $\Lambda(A) \subset L H P s$, then you can also solve the Lyapunov equation $A W+W A^{*}+B B^{*}=0$ and see if the solution is $\succ 0$.
What if $\Lambda(A) \notin L H P$? You can use the following result:
$K(A-\alpha I, B)=K(A, B)$, hence $(A-\alpha I, B)$ is controllable iff (A, B) is.

Proof For all $j \in \mathbb{N},(A-\alpha l)^{j} B$ is a linear combination of $B, A B, A^{2} B \ldots$ hence $K(A-\alpha I, B) \subseteq K(A, B)$. And vice versa.

How to test controllability numerically?

Remark The criterion with the Lyapunov equation actually corresponds to a physical quantity: $x_{0}^{*} W^{-1} x_{0}$ is the minimal amount of energy $\int_{0}^{t_{F}} u(\tau)^{*} u(\tau) d \tau$ that we need to reach $x\left(t_{F}\right)=0$ starting from $x(0)=x_{0}$. (We won't prove it here.)
So the closer (A, B) is to non-controllability, the more energy you need to 'control' certain initial states.
(Matlab examples: construct a non-controllable (A, B) from a Kalman decomposition, and apply the various methods.)

Similarly, there are an infinite number of choices for F that yield a stable $\Lambda(A+B F) \subset L H P$ (by continuity, for instance.)

- How to find one?
- How to find the best one (and what does it even mean)?

How to find a stabilizing control: Bass algorithm

Given a controllable (A, B), how can we compute F so that $\Lambda(A+B F) \subset L H P$?

Let $\alpha>\rho(A)$; then $\Lambda(-A-\alpha I) \subseteq L H P$, and the Lyapunov eq.

$$
-(A+\alpha I) W-W(A+\alpha I)^{*}+2 B B^{*}=0
$$

has a solution $W \succeq 0$. It is actually $W \succ 0$, because $(-A-\alpha I, B)$ is controllable iff (A, B) is.
Some algebra gives another Lyapunov equation

$$
\left(A-B B^{*} W^{-1}\right) W+W\left(A-B B^{*} W^{-1}\right)^{*}+2 \alpha W=0
$$

Earlier result: $W \succ 0,2 \alpha W \succ 0 \Longrightarrow \Lambda\left(A-B\left(B^{*} W^{-1}\right)\right) \subset L H P$.
Remark If (A, B) is controllable, we can find F such that $A+B F$ has any chosen spectrum. (We won't prove it here.) [Datta, Ch. 11]

