Optimal control

Several choices available for stabilizing feedback F : for instance, you can choose different α 's in Bass algorithm.

Is there an 'optimal' one? One possible way to formalize this:

Linear-quadratic optimal control

Find $u:[0, \infty) \rightarrow \mathbb{R}$ (piecewise C^{0}, let's say) that minimizes

$$
\begin{gathered}
V(u)=\int_{0}^{\infty} x^{*} Q x+u^{*} R u d t \\
\text { s.t. } \dot{x}=A x+B u, x(0)=x_{0}, \lim _{t \rightarrow \infty} x(t)=0 .
\end{gathered}
$$

Minimum energy defined by a quadratic form ($R \succeq 0, Q \succeq 0$).
We assume $R \succ 0$: control is never free. Trickier problem otherwise.

Linear-quadratic regulator theorem [Datta, Thm 10.5.1]

A solution follows from calculus of variations principles; here is a self-contained version.

Theorem

Let $Q \succeq 0, R \succ 0, G=B R^{-1} B^{T} \succeq 0$. Suppose that there exists $X=X^{T}$ with

- $A^{T} X+X A+Q-X G X=0$,
- $A-G X \prec 0$,

Then, the solution of the minimum problem

$$
\begin{gathered}
\min \int_{0}^{\infty} x(t)^{T} Q x(t)+u(t)^{T} R u(t) d t \\
\text { s.t. } \dot{x}(t)=A x(t)+B u(t), \quad \lim _{t \rightarrow \infty} x(t)=0
\end{gathered}
$$

is $x_{0}^{T} X x_{0}$, attained when $u(t)=-R^{-1} B^{T} X x(t)$ for all t.

Proof

Note that $A-G X \prec 0$ implies $\lim _{t \rightarrow \infty} x(t)=0$, so this u is admissible.

$$
\begin{aligned}
\frac{\mathrm{d}}{\mathrm{~d} t} x^{T} X x & =\dot{x}^{T} X x+x^{T} X \dot{x} \\
& =(A x+B u)^{T} X x+x^{T} X(A x+B u) \\
& =x^{T}\left(A^{T} X+X A\right) x+u^{T} B^{T} X x+x^{T} X B u \\
& =x^{T}\left(X B R^{-1} B^{T} X-Q\right) x+u^{T} B^{T} X x+x^{T} X B u \\
& =\underbrace{\left(u+R^{-1} B^{T} X x\right)^{T} R\left(u+R^{-1} B^{T} X x\right)}_{\geq 0}-x^{T} Q x-u^{T} R u .
\end{aligned}
$$

Integrating from 0 to ∞,

$$
\int_{0}^{\infty} x^{T} Q x+u^{T} R u \mathrm{~d} t \geq x_{0}^{T} X x_{0}-\underbrace{x(\infty)^{T} X x(\infty)}_{=0}
$$

with equality if $u+R^{-1} B^{T} X x \equiv 0$.

Riccati equation and subspaces

The equation

$$
A^{T} X+X A+Q-X G X=0, \quad Q \succeq 0, G \succeq 0
$$

is called algebraic Riccati equation (ARE). It is an invariant subspace problem in disguise, because it can be rewritten as

$$
\left[\begin{array}{cc}
A & -G \\
-Q & -A^{T}
\end{array}\right]\left[\begin{array}{c}
I \\
X
\end{array}\right]=\left[\begin{array}{c}
I \\
X
\end{array}\right](A-G X)
$$

The invariant subspace problem
Given $\mathcal{H}=\left[\begin{array}{cc}A & -G \\ -Q & -A^{T}\end{array}\right] \in \mathbb{R}^{2 n \times 2 n}$, find full-rank $U \in \mathbb{R}^{2 n \times n}$,
$\mathcal{R} \in \mathbb{R}^{n \times n}$ such that $\mathcal{H} U=U \mathcal{R}$. (Then it follows from the first block that $\mathcal{R}=A-G X)$.

Solvability conditions

Solutions of $($ ARE $) \Longleftrightarrow n$-dimensional invariant subspaces of \mathcal{H} with invertible top block.
If \mathcal{H} has distinct eigenvalues, there are at most $\binom{2 n}{n}$ solutions (choose n eigenvalues out of the $2 n \ldots$); otherwise there may even be an infinite number of them.

Solvability conditions

Does the ARE have a stabilizing solution, i.e., one such that $A-G X \prec 0$?

Two things must happen:

- \mathcal{H} has (at least? exactly?) n eigenvalues in the LHP.
- The associated invariant subspace must be of the form

$$
\mathcal{U}=\operatorname{Im}\left[\begin{array}{l}
I \\
X
\end{array}\right], \text { with } X=X^{T}
$$

Our next goal: show that these assumptions hold.

Hamiltonian matrices

Matrices of the form

$$
\mathcal{H}=\left[\begin{array}{cc}
A & -G \\
-Q & -A^{*}
\end{array}\right], \quad Q=Q^{*}, G=G^{*}
$$

are called Hamiltonian matrix; they satisfy $J \mathcal{H}=-\mathcal{H}^{*} J$, where $J=\left[\begin{array}{ll} & I \\ -I & \end{array}\right]$, i.e., they are skew-self-adjoint with respect to the antisymmetric scalar product defined by J.

Spectral symmetry

If $\mathcal{H} v=\lambda v$, then $\left(v^{*} J\right) \mathcal{H}=(-\bar{\lambda})\left(v^{*} J\right): \Lambda(\mathcal{H})$ is symmetric wrt the imaginary axis.

A similar relation can be proved for Jordan chains: λ and $-\bar{\lambda}$ have Jordan chains of the same size.

Thus, it is sufficient to prove that \mathcal{H} has no pure imaginary eigenvalues to conclude that they split $n: n$ between LHP:RHP.

Solvability conditions

Theorem

Assume $Q \succeq 0, G=B R^{-1} B^{*} \succeq 0$, and (A, B) stabilizable. Then, \mathcal{H} has no eigenvalues with $\operatorname{Re} \lambda=0$.

Proof (sketch)
Suppose instead $\mathcal{H}\left[\begin{array}{l}z_{1} \\ z_{2}\end{array}\right]=\omega \omega\left[\begin{array}{l}z_{1} \\ z_{2}\end{array}\right]$; from
$0=-\operatorname{Re}\left[z_{2}^{*} z_{1}^{*}\right]\left[\begin{array}{cc}A & -G \\ -Q & -A^{*}\end{array}\right]\left[\begin{array}{l}z_{1} \\ z_{2}\end{array}\right]=z_{2}^{*} G z_{2}+z_{1}^{*} Q z_{1}$ follows that $Q z_{1}=0, z_{2}^{*} B=0$. Hence $-A^{*} z_{2}=-\imath \omega z_{2}$, but the last two equations then show that (A, B) is not stabilizable (Popov test).

Hence, \mathcal{H} has n eigenvalues in the LHP and n associated ones in the RHP: it has exactly one stabilizing n-dimensional invariant subspace.

Symmetry of the solution

By the Hamiltonian property, if $\left[\begin{array}{l}U_{1} \\ U_{2}\end{array}\right]$ is the span of the eigenvectors in LHP, then $\left[\begin{array}{ll}U_{1}^{*} & U_{2}^{*}\end{array}\right] J=\left[\begin{array}{ll}U_{2}^{*} & -U_{1}^{*}\end{array}\right]$ is the span of the (left) eigenvectors in RHP.
Left and right invariant subspaces relative to disjoint eigenvectors are orthogonal \Longrightarrow

$$
0=\left[\begin{array}{ll}
U_{2}^{*} & -U_{1}^{*}
\end{array}\right]\left[\begin{array}{l}
U_{1} \\
U_{2}
\end{array}\right]=U_{2}^{*} U_{1}-U_{1}^{*} U_{2}
$$

Form of the invariant subspace

We know now that there exists a (unique) stable invariant subspace

$$
\mathcal{U}=\operatorname{Im}\left[\begin{array}{l}
U_{1} \\
U_{2}
\end{array}\right], \quad U_{1}, U_{2} \in \mathbb{R}^{n \times n}
$$

We would like to show that U_{1} is invertible. Then,

$$
\mathcal{H}\left[\begin{array}{l}
U_{1} \\
U_{2}
\end{array}\right]=\left[\begin{array}{l}
U_{1} \\
U_{2}
\end{array}\right] \mathcal{R}
$$

can be rewritten with a different basis for the invariant subspace

$$
\mathcal{H}\left[\begin{array}{l}
U_{1} \\
U_{2}
\end{array}\right] U_{1}^{-1}=\left[\begin{array}{l}
U_{1} \\
U_{2}
\end{array}\right] U_{1}^{-1}\left(U_{1} \mathcal{R} U_{1}^{-1}\right), \quad\left[\begin{array}{l}
U_{1} \\
U_{2}
\end{array}\right] U_{1}^{-1}=:\left[\begin{array}{c}
I \\
X
\end{array}\right] .
$$

In addition,

$$
X^{*}-X=U_{1}^{-*} U_{2}^{*}-U_{2} U_{1}^{-1}=U_{1}^{-*}\left(U_{2}^{*} U_{1}-U_{1}^{*} U_{2}\right) U_{1}^{-1}=0
$$

Nonsingularity of U_{1}

Suppose (A, B) stabilizable, $Q \succeq 0, G \succeq 0$. Then U_{1} is invertible.
Proof For any v such that $U_{1} v=0$,
$-v^{*} U_{2}^{*} G U_{2} v=\left[\begin{array}{ll}v^{*} U_{2}^{*} & 0\end{array}\right] \mathcal{H}\left[\begin{array}{c}0 \\ U_{2} v\end{array}\right]=v^{*}\left[\begin{array}{ll}U_{2}^{*} & -U_{1}^{*}\end{array}\right]\left[\begin{array}{l}U_{1} \\ U_{2}\end{array}\right] \mathcal{R} v=0$.
implies $B^{*} U_{2} v=0$ and $G U_{2} v=0$. The first block row of

$$
\left[\begin{array}{cc}
A & -G \\
-Q & -A^{*}
\end{array}\right]\left[\begin{array}{l}
U_{1} \\
U_{2}
\end{array}\right] v=\left[\begin{array}{l}
U_{1} \\
U_{2}
\end{array}\right] \mathcal{R} v
$$

gives $U_{1} \mathcal{R} v=0 \Longrightarrow \operatorname{ker} U_{1}$ is \mathcal{R}-invariant. If ker U_{1} is nontrivial, we can find $v, \lambda \in L H P$ such that $U_{1} v=0, \mathcal{R} v=\lambda v$. Now the second block row gives $-A^{*} U_{2} v=\lambda U_{2} v$. This (together with $B^{*} U_{2} v=0$ from above) contradicts stabilizability.

Positive definiteness of the solution

Note that

$$
A R E \Longleftrightarrow(A-G X)^{T} X+X(A-G X)+Q+X G X=0
$$

So X solves the Lyapunov equations

$$
\hat{A}^{T} X+X \hat{A}+\hat{Q}=0, \quad \hat{A}=A-G X, \hat{Q}=Q+X G X
$$

And we know that $\Lambda(\hat{A}) \subset L H P, \hat{Q} \succeq 0 \Longrightarrow X \succeq 0$.
Moreover, we have also shown that under the same assumptions if we also know that (A, B) controllable then $X \succ 0$.

How to solve Riccati equations

- Newton's method (historically the first option).
- Invariant subspace computation: via unstructured methods (QR), 'semi-structured' methods (Laub trick), or fully structured methods (URV).
- Sign iteration (and variants).

