
Optimal control
Several choices available for stabilizing feedback F : for instance,
you can choose different α’s in Bass algorithm.

Is there an ‘optimal’ one? One possible way to formalize this:

Linear-quadratic optimal control
Find u : [0,∞)→ R (piecewise C0, let’s say) that minimizes

V (u) =
∫ ∞

0
x∗Qx + u∗Ru dt

s.t. ẋ = Ax + Bu, x(0) = x0, lim
t→∞

x(t) = 0.

Minimum energy defined by a quadratic form (R � 0, Q � 0).

We assume R � 0: control is never free. Trickier problem
otherwise.



Linear-quadratic regulator theorem [Datta, Thm 10.5.1]

A solution follows from calculus of variations principles; here is a
self-contained version.
Theorem
Let Q � 0, R � 0, G = BR−1BT � 0. Suppose that there exists
X = XT with
I AT X + XA + Q − XGX = 0,
I A− GX ≺ 0,

Then, the solution of the minimum problem

min
∫ ∞

0
x(t)T Qx(t) + u(t)T Ru(t) dt,

s.t. ẋ(t) = Ax(t) + Bu(t), lim
t→∞

x(t) = 0

is xT
0 Xx0, attained when u(t) = −R−1BT Xx(t) for all t.



Proof
Note that A− GX ≺ 0 implies limt→∞ x(t) = 0, so this u is
admissible.

d
dt xT Xx = ẋT Xx + xT Xẋ

= (Ax + Bu)T Xx + xT X (Ax + Bu)
= xT (AT X + XA)x + uT BT Xx + xT XBu
= xT (XBR−1BT X − Q)x + uT BT Xx + xT XBu
= (u + R−1BT Xx)T R(u + R−1BT Xx)︸ ︷︷ ︸

≥0

−xT Qx − uT Ru.

Integrating from 0 to ∞,∫ ∞
0

xT Qx + uT Ru dt ≥ xT
0 Xx0 − x(∞)T Xx(∞)︸ ︷︷ ︸

=0

,

with equality if u + R−1BT Xx ≡ 0.



Riccati equation and subspaces
The equation

AT X + XA + Q − XGX = 0, Q � 0, G � 0

is called algebraic Riccati equation (ARE). It is an invariant
subspace problem in disguise, because it can be rewritten as[

A −G
−Q −AT

] [
I
X

]
=
[

I
X

]
(A− GX ).

The invariant subspace problem

Given H =
[

A −G
−Q −AT

]
∈ R2n×2n, find full-rank U ∈ R2n×n,

R ∈ Rn×n such that HU = UR. (Then it follows from the first
block that R = A− GX ).



Solvability conditions
Solutions of (ARE) ⇐⇒ n-dimensional invariant subspaces of H
with invertible top block.

If H has distinct eigenvalues, there are at most
(2n

n
)
solutions

(choose n eigenvalues out of the 2n. . . ); otherwise there may even
be an infinite number of them.

Solvability conditions
Does the ARE have a stabilizing solution, i.e., one such that
A− GX ≺ 0?

Two things must happen:
I H has (at least? exactly?) n eigenvalues in the LHP.
I The associated invariant subspace must be of the form

U = Im
[

I
X

]
, with X = XT .

Our next goal: show that these assumptions hold.



Hamiltonian matrices
Matrices of the form

H =
[

A −G
−Q −A∗

]
, Q = Q∗, G = G∗

are called Hamiltonian matrix; they satisfy JH = −H∗J , where

J =
[

I
−I

]
, i.e., they are skew-self-adjoint with respect to the

antisymmetric scalar product defined by J .

Spectral symmetry
If Hv = λv , then (v∗J)H = (−λ)(v∗J): Λ(H) is symmetric wrt
the imaginary axis.

A similar relation can be proved for Jordan chains: λ and −λ have
Jordan chains of the same size.

Thus, it is sufficient to prove that H has no pure imaginary
eigenvalues to conclude that they split n : n between LHP:RHP.



Solvability conditions

Theorem
Assume Q � 0, G = BR−1B∗ � 0, and (A,B) stabilizable. Then,
H has no eigenvalues with Reλ = 0.

Proof (sketch)
Suppose instead H[ z1z2 ] = ıω[ z1z2 ]; from
0 = −Re[ z∗

2 z∗
1 ]
[

A −G
−Q −A∗

]
[ z1z2 ] = z∗2 Gz2 + z∗1 Qz1 follows that

Qz1 = 0, z∗2 B = 0. Hence −A∗z2 = −ıωz2, but the last two
equations then show that (A,B) is not stabilizable (Popov test).

Hence, H has n eigenvalues in the LHP and n associated ones in
the RHP: it has exactly one stabilizing n-dimensional invariant
subspace.



Symmetry of the solution

By the Hamiltonian property, if
[
U1
U2

]
is the span of the

eigenvectors in LHP, then
[
U∗1 U∗2

]
J =

[
U∗2 −U∗1

]
is the span

of the (left) eigenvectors in RHP.

Left and right invariant subspaces relative to disjoint eigenvectors
are orthogonal =⇒

0 =
[
U∗2 −U∗1

] [U1
U2

]
= U∗2 U1 − U∗1 U2.



Form of the invariant subspace
We know now that there exists a (unique) stable invariant subspace

U = Im
[
U1
U2

]
, U1,U2 ∈ Rn×n.

We would like to show that U1 is invertible. Then,

H
[
U1
U2

]
=
[
U1
U2

]
R

can be rewritten with a different basis for the invariant subspace

H
[
U1
U2

]
U−1

1 =
[
U1
U2

]
U−1

1 (U1RU−1
1 ),

[
U1
U2

]
U−1

1 =:
[

I
X

]
.

In addition,

X ∗ − X = U−∗1 U∗2 − U2U−1
1 = U−∗1 (U∗2 U1 − U∗1 U2)U−1

1 = 0.



Nonsingularity of U1

Suppose (A,B) stabilizable, Q � 0, G � 0. Then U1 is invertible.

Proof For any v such that U1v = 0,

−v∗U∗2 GU2v =
[
v∗U∗2 0

]
H
[

0
U2v

]
= v∗

[
U∗2 −U∗1

] [U1
U2

]
Rv = 0.

implies B∗U2v = 0 and GU2v = 0. The first block row of[
A −G
−Q −A∗

] [
U1
U2

]
v =

[
U1
U2

]
Rv

gives U1Rv = 0 =⇒ ker U1 is R-invariant. If ker U1 is nontrivial,
we can find v , λ ∈ LHP such that U1v = 0, Rv = λv . Now the
second block row gives −A∗U2v = λU2v . This (together with
B∗U2v = 0 from above) contradicts stabilizability.



Positive definiteness of the solution
Note that

ARE ⇐⇒ (A− GX )T X + X (A− GX ) + Q + XGX = 0.

So X solves the Lyapunov equations

ÂT X + XÂ + Q̂ = 0, Â = A− GX , Q̂ = Q + XGX .

And we know that Λ(Â) ⊂ LHP, Q̂ � 0 =⇒ X � 0.

Moreover, we have also shown that under the same assumptions if
we also know that (A,B) controllable then X � 0.



How to solve Riccati equations
I Newton’s method (historically the first option).
I Invariant subspace computation: via unstructured methods

(QR), ‘semi-structured’ methods (Laub trick), or fully
structured methods (URV).

I Sign iteration (and variants).


