
Invariant subspace methods for CAREs
X solves CARE A∗X + XA + Q = XGX iff[

A −G
−Q −AT

] [
I
X

]
=

[
I
X

]
R, R = A− GX .

One can find X through an invariant subspace of the Hamiltonian.

>> [A,G,Q] = carex(4) %if test suite is installed
>> n = length(A);
>> H = [A -G; -Q -A’];
>> [U, T] = schur(H);
>> [U, T] =ordschur(U, T, ’lhp’);
>> X = U(n+1:2*n, 1:n) / U(1:n, 1:n);



Recall: backward stability
QR-like algorithms based on successive orthogonal transformations
are backward stable: the local error ∆Mi at each step (from
machine arithmetic + truncation of ‘numerical zeros’) is mapped
back to a “global error” QT

1 QT
2 . . . QT

i (∆Mi )Qi . . . Q2Q1 of the
same norm.

In particular, the Schur method computes a true invariant
subspace of H+ ∆H, with ‖∆H‖ small.

However, this method is not structured backward stable: the error
∆H is not Hamiltonian.

Among the consequences, eigenvalues close to the imaginary axis
can be ‘mixed up’. Try carex(14) for instance: the Schur method
produces an invariant subspace U that does not give a symmetric
X , because it is the wrong invariant subspace.



Symplectic transformations
What preserves Hamiltonianity? Symplectic transformations do:

Definition
S ∈ C2n×2n is symplectic, i.e., orthogonal w.r.t the scalar product

J =
[
0 I
−I 0

]
, if S∗JS = J .

Lemma
If H is Hamiltonian and S is symplectic, then S−1HS is
Hamiltonian.

Proof: (S−1HS)∗J = J(S−1HS) ⇐⇒
(S−1HS)∗S∗JS = S∗JS(S−1HS) ⇐⇒ S∗H∗JS = S∗JHS.

Remark: symplectic transformations do not automatically ensure
stability: ‖v‖ small does not imply ‖Sv‖ small.



Orthosymplectic transformations
Ideal setting: construct successive changes of bases H 7→ S−1HS
where S is both orthogonal (for stability reasons) and symplectic
(for structure preservation reasons).
For instance:
I If Q ∈ Rn×n is any orthogonal matrix, then blkdiag(Q, Q) is

orthogonal and symplectic.
I A Givens matrix that acts on entries k and n + k (i.e.,

G = eye(2*n); G([k,n+k], [k,n+k]) = [c s; -s c];)
is orthogonal and symplectic.



The “Laub trick”
There is a certain orthogonal and symplectic matrix that reduces
H to a special form.

Let U =
[
U11 U12
U21 U22

]
the unitary matrix produced by schur(H).

Then,
I

[
U11
U21

]
spans the stable subspace and has orthonormal columns

(U∗
11U11 + U∗

21U21 = I);
I we have proved earlier that U∗

21U11 − U∗
11U21 = 0.

These two properties imply that V =
[
U11 −U21
U21 U11

]
is orthogonal

and symplectic.

Then, V THV =
[
T11 T12
0 −T ∗

11

]
, with T11 upper triangular and T12

symmetric (Hamiltonian Schur form).



An orthogonal symplectic algorithm
It is a nice trick, but numerically it is not any more effective than
the “non-structured” Schur method, because in the end the
computed invariant subspace is the same

[
U11
U21

]
.

But the existence of this nice structured factorization suggests that
maybe there is a structure-preserving method to compute it.

Problem (“curse of Van Loan”)
Is there a structure-preserving QR method that produces the
Hamiltonian Schur form via a sequence of orthosymplectic
transformations applied to H?

Roadblock: some Hamiltonian matrices H (coming from problems
with non-controllable (A, B)) do not admit a Hamiltonian Schur
form =⇒ algorithms to compute a HSF must become unstable
for nearby matrices.



Chu–Liu–Mehrmann algorithm [Chu-Liu-Mehrmann ’98]

A solution comes from another, different decomposition:
H = URV T , with U, V orthosymplectic and

R =
[
R11 R12
0 R22

]

with R11, R∗
22 upper triangular.

(Reminds a little of an SVD.)

It can be computed ‘almost’ directly in O(n3).

Note that this R is not Hamiltonian.



URV — simpler version (produces Hessenberg R22)

I Left-multiply by blkdiag(Q, Q) to get
∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗
0 ∗ ∗ ∗ ∗ ∗
0 ∗ ∗ ∗ ∗ ∗

I Left-multiply by a Givens on (1, n + 1) to get
∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗
0 ∗ ∗ ∗ ∗ ∗
0 ∗ ∗ ∗ ∗ ∗
0 ∗ ∗ ∗ ∗ ∗

I Left-multiply by blkdiag(Q, Q) to get
∗ ∗ ∗ ∗ ∗ ∗
0 ∗ ∗ ∗ ∗ ∗
0 ∗ ∗ ∗ ∗ ∗
0 ∗ ∗ ∗ ∗ ∗
0 ∗ ∗ ∗ ∗ ∗
0 ∗ ∗ ∗ ∗ ∗

I Right-multiply by blkdiag(Q, Q) to get
∗ ∗ ∗ ∗ ∗ ∗
0 ∗ ∗ ∗ ∗ ∗
0 ∗ ∗ ∗ ∗ ∗
0 0 ∗ ∗ ∗ ∗
0 ∗ ∗ ∗ ∗ ∗
0 ∗ ∗ ∗ ∗ ∗

I Right-multiply by a Givens on (2, n + 2) to get
∗ ∗ ∗ ∗ ∗ ∗
0 ∗ ∗ ∗ ∗ ∗
0 ∗ ∗ ∗ ∗ ∗
0 0 0 ∗ ∗ ∗
0 ∗ ∗ ∗ ∗ ∗
0 ∗ ∗ ∗ ∗ ∗

I Right-multiply by blkdiag(Q, Q) to get
∗ ∗ ∗ ∗ ∗ ∗
0 ∗ ∗ ∗ ∗ ∗
0 ∗ ∗ ∗ ∗ ∗
0 0 0 ∗ ∗ 0
0 ∗ ∗ ∗ ∗ ∗
0 ∗ ∗ ∗ ∗ ∗



Using URV
Note that H = URV together with symplecticity implies

H = V
[
−RT

22 RT
12

0 −RT
11

]
UT .

Hence
H2 = V

[
−R11RT

22 ∗
0 −R22RT

11

]
V T

can be used to compute eigenvalues (easily) and eigenvectors of H
(for instance: the columns of V cause breakdown at step 2 in
Arnoldi).


