Invariant subspace methods for CAREs

X solves CARE $A^*X + XA + Q = XGX$ iff

$$
\begin{bmatrix} A & -G \\ -Q & -A^T \end{bmatrix} \begin{bmatrix} I \\ X \end{bmatrix} = \begin{bmatrix} I \\ X \end{bmatrix} R, \quad R = A - GX.
$$

One can find X through an invariant subspace of the Hamiltonian.

 \Rightarrow [A,G,Q] = carex(4) %if test suite is installed \Rightarrow n = length(A); $>> H = [A - G; -Q - A']:$ $>>$ [U, T] = schur(H); \Rightarrow [U, T] =ordschur(U, T, 'lhp'); \Rightarrow X = U(n+1:2*n, 1:n) / U(1:n, 1:n);

Recall: backward stability

QR-like algorithms based on successive orthogonal transformations are backward stable: the local error ΔM_i at each step (from machine arithmetic $+$ truncation of 'numerical zeros') is mapped back to a "global error" $Q_1^T Q_2^T \ldots Q_i^T (\Delta M_i) Q_i \ldots Q_2 Q_1$ of the same norm.

In particular, the Schur method computes a true invariant subspace of $\mathcal{H} + \Delta\mathcal{H}$, with $\|\Delta\mathcal{H}\|$ small.

However, this method is not structured backward stable: the error Δ H is not Hamiltonian.

Among the consequences, eigenvalues close to the imaginary axis can be 'mixed up'. Try carex(14) for instance: the Schur method produces an invariant subspace U that does not give a symmetric X , because it is the wrong invariant subspace.

Symplectic transformations

What preserves Hamiltonianity? Symplectic transformations do:

Definition

 $S \in \mathbb{C}^{2n \times 2n}$ is symplectic, i.e., orthogonal w.r.t the scalar product $J =$ $\begin{bmatrix} 0 & I \end{bmatrix}$ −I 0 1 , if $S^*JS = J$.

Lemma

If ${\cal H}$ is Hamiltonian and S is symplectic, then $S^{-1}{\cal H} S$ is Hamiltonian.

Proof:
$$
(S^{-1}HS)^*J = J(S^{-1}HS) \iff
$$

 $(S^{-1}HS)^*S^*JS = S^*JS(S^{-1}HS) \iff S^*H^*JS = S^*JHS.$

Remark: symplectic transformations do not automatically ensure stability: $\|v\|$ small does not imply $\|Sv\|$ small.

Orthosymplectic transformations

Ideal setting: construct successive changes of bases $\mathcal{H} \mapsto \mathcal{S}^{-1} \mathcal{H} \mathcal{S}$ where S is both orthogonal (for stability reasons) and symplectic (for structure preservation reasons). For instance:

- If $Q \in \mathbb{R}^{n \times n}$ is any orthogonal matrix, then blkdiag(Q, Q) is orthogonal and symplectic.
- A Givens matrix that acts on entries k and $n + k$ (i.e., $G = eye(2*n); G([k,n+k], [k,n+k]) = [c s; -s c];)$ is orthogonal and symplectic.

The "Laub trick"

There is a certain orthogonal and symplectic matrix that reduces H to a special form.

Let
$$
U = \begin{bmatrix} U_{11} & U_{12} \\ U_{21} & U_{22} \end{bmatrix}
$$
 the unitary matrix produced by schur(H) .
Then,

 $\blacktriangleright \left[\begin{smallmatrix} U_{11} \ U_{21} \end{smallmatrix}\right]$ spans the stable subspace and has orthonormal columns $(U_{11}^*U_{11}+U_{21}^*U_{21}=I);$

• we have proved earlier that $U_{21}^* U_{11} - U_{11}^* U_{21} = 0$.

These two properties imply that $V=$ $\begin{bmatrix} U_{11} & -U_{21} \\ U_{21} & U_{11} \end{bmatrix}$ is orthogonal and symplectic.

Then, $V^{\mathcal{T}}\mathcal{H}V=\begin{bmatrix} \mathcal{T}_{11} & \mathcal{T}_{12} \ 0 & \mathcal{T}^* \end{bmatrix}$ $\begin{bmatrix} 11 & T_{12} \ 0 & -T_{11}^* \end{bmatrix}$, with \mathcal{T}_{11} upper triangular and \mathcal{T}_{12} symmetric (Hamiltonian Schur form).

An orthogonal symplectic algorithm

It is a nice trick, but numerically it is not any more effective than the "non-structured" Schur method, because in the end the computed invariant subspace is the same $\left[\begin{smallmatrix} U_{11} \ U_{21} \end{smallmatrix}\right]$. But the existence of this nice structured factorization suggests that maybe there is a structure-preserving method to compute it.

Problem ("curse of Van Loan")

Is there a structure-preserving QR method that produces the Hamiltonian Schur form via a sequence of orthosymplectic transformations applied to H ?

Roadblock: some Hamiltonian matrices H (coming from problems with non-controllable (A*,* B)) do not admit a Hamiltonian Schur form \implies algorithms to compute a HSF must become unstable for nearby matrices.

Chu–Liu–Mehrmann algorithm [Chu-Liu-Mehrmann '98]

A solution comes from another, different decomposition: $H = U R V^T$, with U, V orthosymplectic and

$$
R = \begin{bmatrix} R_{11} & R_{12} \\ 0 & R_{22} \end{bmatrix}
$$

with R_{11}, R_{22}^* upper triangular.

(Reminds a little of an SVD.)

It can be computed 'almost' directly in $O(n^3)$.

Note that this R is not Hamiltonian.

URV — simpler version (produces Hessenberg R_{22})

```
\blacktriangleright Left-multiply by blkdiag(Q, Q) to get
                                                      ∗ ∗ ∗ ∗ ∗ ∗
                                                      ∗ ∗ ∗ ∗ ∗ ∗
                                                      ∗ ∗ ∗ ∗ ∗ ∗
                                                      ∗ ∗ ∗ ∗ ∗ ∗
                                                      0 ∗ ∗ ∗ ∗ ∗
0 ∗ ∗ ∗ ∗ ∗
\blacktriangleright Left-multiply by a Givens on (1, n+1) to get
                                                                 ∗ ∗ ∗ ∗ ∗ ∗
                                                                 ∗ ∗ ∗ ∗ ∗ ∗
                                                                 ∗ ∗ ∗ ∗ ∗ ∗
                                                                 0 ∗ ∗ ∗ ∗ ∗
                                                                 0 ∗ ∗ ∗ ∗ ∗
                                                                 0 ∗ ∗ ∗ ∗ ∗
\blacktriangleright Left-multiply by blkdiag(Q, Q) to get
                                                      ∗ ∗ ∗ ∗ ∗ ∗
                                                      0 ∗ ∗ ∗ ∗ ∗
                                                      0 ∗ ∗ ∗ ∗ ∗
                                                      0 ∗ ∗ ∗ ∗ ∗
                                                      0 ∗ ∗ ∗ ∗ ∗
                                                      0 ∗ ∗ ∗ ∗ ∗
\blacktriangleright Right-multiply by blkdiag(Q, Q) to get
                                                         ∗ ∗ ∗ ∗ ∗ ∗
                                                       0 ∗ ∗ ∗ ∗ ∗
                                                       0 ∗ ∗ ∗ ∗ ∗
                                                       0.0 *0 ∗ ∗ ∗ ∗ ∗
                                                       0 ∗ ∗ ∗ ∗ ∗
Right-multiply by a Givens on (2, n+2) to get
                                                                   ∗ ∗ ∗ ∗ ∗ ∗
                                                                   0 ∗ ∗ ∗ ∗ ∗
                                                                   0 ∗ ∗ ∗ ∗ ∗
                                                                  0.000 ∗ ∗ ∗ ∗ ∗
                                                                  0 ∗ ∗ ∗ ∗ ∗
   Right-multiply by blkdiag(Q, Q) to get
                                                        ∗ ∗ ∗ ∗ ∗ ∗
                                                        0 ∗ ∗ ∗ ∗ ∗
                                                       0 *0.000 ∗ ∗ ∗ ∗ ∗
                                                        0 ∗ ∗ ∗ ∗ ∗
```
Using URV

Note that $H = URV$ together with symplecticity implies

$$
\mathcal{H} = V \begin{bmatrix} -R_{22}^T & R_{12}^T \\ 0 & -R_{11}^T \end{bmatrix} U^T.
$$

Hence

$$
\mathcal{H}^2 = V \begin{bmatrix} -R_{11}R_{22}^T & * \\ 0 & -R_{22}R_{11}^T \end{bmatrix} V^T
$$

can be used to compute eigenvalues (easily) and eigenvectors of H (for instance: the columns of V cause breakdown at step 2 in Arnoldi).