Qui raccolgo un po' di possibilità per i progetti finali. * [Güttel, Nakatsukasa, "Scaled and Squared Subdiagonal Padé Approximation for the Matrix Exponential", https://doi.org/10.1137/15M1027553] * [Watkins, "Product Eigenvalue Problems", https://doi.org/10.1137/S0036144504443110]. * [Benner, Byers, "An Arithmetic for Matrix Pencils: Theory and New Algorithms", https://doi.org/10.1007/s00211-006-0001-x] * [Guo, Lin, Xu, "A structure-preserving doubling algorithm for nonsymmetric algebraic Riccati equation", https://doi.org/10.1007/s00211-005-0673-7] * [Li, Chu, Lin, Weng, "Solving large-scale continuous-time algebraic Riccati equations by doubling", https://doi.org/10.1016/j.cam.2012.06.006] * [Fasi, Iannazzo "Computing primary solutions of equations involving primary matrix functions", https://doi.org/10.1016/j.laa.2018.09.010] (basta il caso reale) * [Aprahamian, Higham, "The matrix unwinding function, with an application to computing the matrix exponential.", https://doi.org/10.1137/130920137] * [Shao, Gao, Xue, "Aggressively truncated Taylor series method for accurate computation of exponentials of essentially nonnegative matrices", https://doi.org/10.1137/120894294] * [Bai, Demmel, Gu, "An inverse free parallel spectral divide and conquer algorithm for nonsymmetric eigenproblems", https://doi.org/10.1007/s002110050264] * [Benner, Byers, "Newton's Method with Exact Line Search for Solving the Algebraic Riccati Equation", http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.49.5863] * [Kuzmanović, Truhar "Sherman–Morrison–Woodbury formula for Sylvester and T-Sylvester equations with applications", https://doi.org/10.1080/00207160.2012.716154] * [Nakatsukasa, Bai, Gygi, "Optimizing Halley's iteration for computing the matrix polar decomposition", https://doi.org/10.1137/090774999] * [Güttel, Berljafa "The RKFIT Algorithm for Nonlinear Rational Approximation", https://doi.org/10.1137/15M1025426] * [Kurbatov, Kurbatova, "Computation of a function of a matrix with close eigenvalues by means of the Newton interpolating polynomial", https://doi.org/10.1080/03081087.2015.1024243] * [Benzi, Klymko, "On the limiting behavior of parameter-dependent network centrality measures.", https://doi.org/10.1137/130950550] * [Iannazzo, Manasse "A Schur Logarithmic Algorithm for Fractional Powers of Matrices", https://doi.org/10.1137/120877398] * [Guo, Lancaster, "Analysis and modification of Newton's method for algebraic Riccati equations", https://www.jstor.org/stable/2585172] * [Guo, "Nonsymmetric algebraic Riccati equations and Wiener-Hopf factorization for M-matrices", https://doi.org/10.1137/S0895479800375680] * Possiamo anche accordarci su un altro articolo su un argomento di vostro interesse --- chiedetemi. # Accesso agli articoli È possibile accedere alla maggior parte degli articoli citati qui: * dall'interno della rete Unipi (Unipisa o Eduroam), oppure * dall'esterno, tramite una virtual private network: una VPN è un modo per instradare un collegamento internet in modo che passi dai server dell'università. Info su https://start.unipi.it/en/help-ict/vpn/ .