Methods for large-scale control systems

We give a hint of the methods used for large-scale control systems.

What does a large-scale control system look like?
Example: the heat equation: finite-difference discretization of a 2D
or 3D structure, possibly with a nontrivial shape.

> Large, sparse A € R"*" produced by the discretization (state
evolves ‘locally’).

> B e R™™ with m < n (the control acts only on a few
points). Hence G = BR™1B* has low rank.

» Q= C*C is also often taken to be low-rank (energy based on
‘output’ values measured in a few points).



Large-scale Lyapunov equations

We focus on Lyapunov equations, AX + XA* + BB* = 0: then we
can solve CAREs using Newton's method.

Assumptions: A large and sparse with A(A) C LHP. B € R™™,
with m < n.

In addition, we may suppose B = b € R" without loss of
generality: a rank-m matrix is the sum of m rank-1 matrices, and
the equation is linear.

Assume A symmetric, normal or ‘almost normal’. The algorithms
often work for generic A, but the analysis works better for normal
matrices.

Roadblock: the solution X is dense and full-rank (X > 0)!
Solution: often, X ~ ZZ* with a tall thin Z: it has decaying
singular values and low numerical rank (we will see why).



Time discretization

Underlying idea: let's switch from a continuous-time control
system to a discrete-time one; in particular, we would like to use
the midpoint method:

X = Ax + Bu

is discretized to

Xk+1 — Xk
h

(Axk + Buk + Axy1 + Bugy 1),

N

ie.,
X1 = (I — gA)_l(l + gA)Xk + (/- gA)_lB(uk + Uk—i—l)g-

This specific method is particularly nice, because it preserves
stability: the open-loop system x = Ax is stable iff

X1 = (I = BA) L1 + BA)xk is so.

Lemma For each 7 > 0, the map ¢(x) = %%~ is such that
¢(LHP) = unit disc.



ADI (alternating-direction implicit iteration)

Let 7 > 0, so that A(A— 7/) C LHP. One can rewrite
AX 4+ XA* 4+ bb* =0 as

(A—1hX(A=1)*—(A+TNX(A+T7l)" —271bb* =0
or (with ¢c(x) = X£7)
X — c(A)Xc(A)* =21(A— 71" bb* (A —71) 7%,
a Stein equation. We can solve it with the fixed-point iteration
Xo=0, Xx=c(A)Xx_1c(A)* +27(A—7I)"1bb*(A—7I)~*

Recall that ¢(LHP) = unit disc; hence A(c(A)) C unit disc and the
iteration converges.



Low-rank ADI
Setting A = c(A) and b = v27(A— 7/)"1b, we have
X, = bb* + Abb*A x +A%bb* A% + ... + Akbh* Ak*,
Or, in terms of its low-rank factor
Zo=[b Ab A ... Ak, Xc=ZZ.

We can get faster convergence by changing the value of 7 at each
step: with

() = K di(x) = VaR

_X—Tk

X—Tk’

Xo=0, X,= Ck(A)Xk_le(A)* + dk(A)bb*dk(A)*.



Low-rank ADI

After k steps we have
Zi=[ckcko1- - @di(A)b - ckdi 1(A)b di(A)b].
We can compute the same quantity “starting from the right":

Zi=|dhcr...c1cu(A)b - di1ck(A)b di(A)D]

—

[E—1

Vi Vi1 o+ vif.

Since ¢j(x) = \/L(x + 75)dj(x), we can compute the v;'s

27;

iteratively.

Low-rank ADI

_ \/ 27} _
v =V2r(A-m)th, v = 27,’1(\/j+(n—1+n)(A—Tj/) ).
—

One can also use complex shifts (details omitted, 7;s appears).



ADI: convergence
ADI residual:

Xic = X. = a(A)(Xior — X)eu(A) = -+ = g(A)(Xo — X.)g(A)",

k p—
where g(x) = [];; §+:j

Convergence speed depends on the choices of 7;. Intuitively: good
if A+ 7;lis small and A — 7/ is large. This suggests taking 7; as
(some of) the eigenvalues of A.

If A= VAV~L then

k
max A = 7]
AeN(A) g [N+ 75|

lg(A) < £(V) m

How to choose 7;'s that make this norm small? Easy if A has few /
clustered eigenvalues.



ADI convergence

Nk = min max m ‘)\ — TJ|
0,07k AEA(A) i A+ 751

The optimum depends on A(A).

Typical approach: find an enclosing region for the eigenvalues of A
(for instance, if A= A*, all eigenvalues are in [Amin, Amax]); then,
look for a polynomial that is ‘small’ on [Amin, Amax| and ‘large’ on
[_)\mam _Amin]-

Deep, classical problem from approximation theory; explicit
solutions can be constructed from elliptic functions. It is known

that in the optimum 7y ~ r¥ for a certain r < 1 that depends on
A|ﬂa>(
K = qmex

min

Consequence Since || Xy — Xk|| ~ r¥, and rk X = k, it follows that
ok11(X) < rk, so X has low numerical rank.



Residual computation

Detail As a natural stopping criterion, we may use the residual
AZZ; + Zi Zp A* + BB*, but how to compute it without
assembling large matrices?

For Xy = ZkZ;, with Z, € R™k, we have

AZZi+ L Z A BB = |Z AZc B 2 AZ B]*

O - O
O O -~
-~ O O

Using a QR of the tall thin [Zk AZy B}, we can compute this

norm in O(nk?).



Rational Arnoldi

The computed Zx has columns of the form r(A)b, where
r(x) = p(x)/q(x), denominator
p(x) =(x—71)(x —12)...(x —7%).

Hence, our approximation Zj lives in a rational Arnoldi subspace
Kq(A,b) = {q(A)*p(A)b: degp < k} = q(A) " Kk(A, b).

Idea: first compute this subspace, then solve the projected
equation.



Galerkin Projection

Given an orthonormal basis Uy of K4(A, b):
1. Set X, = UkYkU,t;
2. Assume ‘orthogonal residual’: Uj(AXk + XkA* + BB*) Uy = 0.

Produces a projected Lyapunov equation
(UFAUR)Y + Y (UL AU + UgBB* U = 0.

Difficulty 1 Even if A(A) C LHP, the same property does not
always hold for U;AU.

Recall: the eigenvalues of Ay = U; AUy are in the field of values of
A, which is hull A(A) for normal A, but larger (possibly by much)
for non-normal A.

Difficulty 2 (main one, shared with ADI): good pole selection.



