
Methods for large-scale control systems
We give a hint of the methods used for large-scale control systems.

What does a large-scale control system look like?
Example: the heat equation: finite-difference discretization of a 2D
or 3D structure, possibly with a nontrivial shape.

I Large, sparse A ∈ Rn×n produced by the discretization (state
evolves ‘locally’).

I B ∈ Rn×m with m� n (the control acts only on a few
points). Hence G = BR−1B∗ has low rank.

I Q = C∗C is also often taken to be low-rank (energy based on
‘output’ values measured in a few points).



Large-scale Lyapunov equations
We focus on Lyapunov equations, AX + XA∗ + BB∗ = 0: then we
can solve CAREs using Newton’s method.

Assumptions: A large and sparse with Λ(A) ⊂ LHP. B ∈ Rn×m,
with m� n.

In addition, we may suppose B = b ∈ Rn without loss of
generality: a rank-m matrix is the sum of m rank-1 matrices, and
the equation is linear.

Assume A symmetric, normal or ‘almost normal’. The algorithms
often work for generic A, but the analysis works better for normal
matrices.

Roadblock: the solution X is dense and full-rank (X � 0)!
Solution: often, X ≈ ZZ ∗ with a tall thin Z : it has decaying
singular values and low numerical rank (we will see why).



Time discretization
Underlying idea: let’s switch from a continuous-time control
system to a discrete-time one; in particular, we would like to use
the midpoint method:

ẋ = Ax + Bu

is discretized to

xk+1 − xk
h = 1

2 (Axk + Buk + Axk+1 + Buk+1) ,

i.e.,

xk+1 = (I − h
2A)−1(I + h

2A)xk + (I − h
2A)−1B(uk + uk+1)h

2 .

This specific method is particularly nice, because it preserves
stability: the open-loop system ẋ = Ax is stable iff
xk+1 = (I − h

2A)−1(I + h
2A)xk is so.

Lemma For each τ > 0, the map c(x) = x+τ
x−τ is such that

c(LHP) = unit disc.



ADI (alternating-direction implicit iteration)
Let τ > 0, so that Λ(A− τ I) ⊂ LHP. One can rewrite
AX + XA∗ + bb∗ = 0 as

(A− τ I)X (A− τ I)∗ − (A + τ I)X (A + τ I)∗ − 2τbb∗ = 0

or (with c(x) = x+τ
x−τ )

X − c(A)Xc(A)∗ = 2τ(A− τ I)−1bb∗(A− τ I)−∗,

a Stein equation. We can solve it with the fixed-point iteration

X0 = 0, Xk = c(A)Xk−1c(A)∗ + 2τ(A− τ I)−1bb∗(A− τ I)−∗.

Recall that c(LHP) = unit disc; hence Λ(c(A)) ⊂ unit disc and the
iteration converges.



Low-rank ADI
Setting Â = c(A) and b̂ =

√
2τ(A− τ I)−1b, we have

Xk = b̂b̂∗ + Âb̂b̂∗Â ∗+Â2b̂b̂∗Â2∗ + · · ·+ Âk b̂b̂∗Âk∗.

Or, in terms of its low-rank factor

Zk =
[
b̂ Âb̂ Â2b̂ . . . Âk b̂

]
, Xk = ZkZ ∗k .

We can get faster convergence by changing the value of τ at each
step: with

ck(x) = x + τk
x − τk

, dk(x) =
√
2τk

1
x − τk

,

X0 = 0, Xk = ck(A)Xk−1ck(A)∗ + dk(A)bb∗dk(A)∗.



Low-rank ADI
After k steps we have

Zk =
[
ckck−1 . . . c2d1(A)b · · · ckdk−1(A)b dk(A)b

]
.

We can compute the same quantity “starting from the right”:

Zk =
[
d1c2 . . . ck−1ck(A)b · · · dk−1ck(A)b dk(A)b

]
=

[
vk vk−1 · · · v1

]
.

Since cj(x) = 1√
2τj

(x + τj)dj(x), we can compute the vj ’s
iteratively.

Low-rank ADI

v1 =
√
2τ1(A−τ1)−1b, vj =

√
2τj√
2τj−1

(vj +(τj−1+τj)(A−τj I)−1vj).

One can also use complex shifts (details omitted, τ js appears).



ADI: convergence
ADI residual:

Xk − X∗ = ck(A)(Xk−1 − X∗)ck(A)∗ = · · · = g(A)(X0 − X∗)g(A)∗,

where g(x) =
∏k

i=j
x−τj
x+τj

.

Convergence speed depends on the choices of τj . Intuitively: good
if A + τj I is small and A− τj I is large. This suggests taking τj as
(some of) the eigenvalues of A.

If A = V ΛV−1, then

‖g(A)‖ ≤ κ(V ) max
λ∈Λ(A)

k∏
j=0

|λ− τj |
|λ+ τj |

.

How to choose τj ’s that make this norm small? Easy if A has few /
clustered eigenvalues.



ADI convergence

ηk = min
τ0,...,τk

max
λ∈Λ(A)

k−1∏
j=0

|λ− τj |
|λ+ τj |

.

The optimum depends on Λ(A).
Typical approach: find an enclosing region for the eigenvalues of A
(for instance, if A = A∗, all eigenvalues are in [λmin, λmax]); then,
look for a polynomial that is ‘small’ on [λmin, λmax] and ‘large’ on
[−λmax,−λmin].
Deep, classical problem from approximation theory; explicit
solutions can be constructed from elliptic functions. It is known
that in the optimum ηk ∼ rk for a certain r < 1 that depends on
κ = λmax

λmin
.

Consequence Since ‖X∗ − Xk‖ ∼ rk , and rk Xk = k, it follows that
σk+1(X ) . rk , so X has low numerical rank.



Residual computation
Detail As a natural stopping criterion, we may use the residual
AZkZ ∗k + ZkZ ∗k A∗ + BB∗, but how to compute it without
assembling large matrices?
For Xk = ZkZ ∗k , with Zk ∈ Rn×k , we have

AZkZ ∗k +ZkZ ∗k A∗+BB∗ =
[
Zk AZk B

] 0 I 0
I 0 0
0 0 I

 [
Zk AZk B

]∗
.

Using a QR of the tall thin
[
Zk AZk B

]
, we can compute this

norm in O(nk2).



Rational Arnoldi
The computed Zk has columns of the form r(A)b, where
r(x) = p(x)/q(x), denominator
p(x) = (x − τ1)(x − τ2) . . . (x − τk).

Hence, our approximation Zk lives in a rational Arnoldi subspace

Kq(A, b) = {q(A)−1p(A)b : deg p < k} = q(A)−1Kk(A, b).

Idea: first compute this subspace, then solve the projected
equation.



Galerkin Projection
Given an orthonormal basis Uk of Kq(A, b):
1. Set Xk = UkYkU∗k ;
2. Assume ‘orthogonal residual’: U∗k (AXk + XkA∗+ BB∗)Uk = 0.

Produces a projected Lyapunov equation

(U∗k AUk)Y + Y (U∗k AUk)∗ + U∗k BB∗Uk = 0.

Difficulty 1 Even if Λ(A) ⊂ LHP, the same property does not
always hold for U∗k AUk .
Recall: the eigenvalues of Ak = U∗k AUk are in the field of values of
A, which is hull Λ(A) for normal A, but larger (possibly by much)
for non-normal A.
Difficulty 2 (main one, shared with ADI): good pole selection.


