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This document contains work-in-progress notes on the topics treated in the
course. They are converted semi-automatically from the Beamer slides that I
used in the past years, so the wording is still “slides-like” in many parts, but I
am trying to expand e.g. on the proofs.

They are meant first of all for me to use as notes while I am teaching, but
they could be useful for students and independent learners, too.



Chapter 1

Sylvester equations and
vectorization

Sylvester equation
AX -XB=C

A E C7n><m,, C’X e Cm/xﬂ,’ B e (CHX'I'L.

This is, in disguise, a mn x mn linear system. Vectorization gives us an
explicit way to construct it.

Vectorization: definition

T11
T21

Tmi
T12

T
T11 I12 e Tin 22

T21 Z22 . Ton

vec X = vec . . ) . =
. . . . Tm?2

Tml | Tm2 | --- Tmn

Tin
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_xmn_

Vectorization: comments



Column-magjor order: leftmost index ‘changes more often’. Matches Fortran,
Matlab standard (C/C++ prefer row-major instead).

Converting indices in the matrix into indices in the vector:

(X)ZJ = (VeC X)ierj

0-based,
(X)ij = (vec X)iym(j—1)

1-based.

Using vectorization, we can work out the representation of a simple linear
map, X — AXB (for fixed matrices A, B of compatible dimensions).

If X e Rm*" AXB € RP*Y we need the pg x mn matrix that maps vec X
to vec(AX B).

(AXB)p =Y (AX)n(B)ji =Y > AniXi;Bj
J Jj i
ApmBu | AmiBa AneBar ... ApmBa | ...

‘Ahanl Ap2Bni ApmBn | vec X

=| AmBu ApBy

Kronecker product: definition

b11A b21A Ce bnlA

b12A b22A e anA
vec(AXB)=| . ) ) vec X

bigA bogA ... bugA

Each block is a multiple of A, with coefficient given by the corresponding entry
of BT.

Definition

3311Y £E12Y {I?lnY

XQY = T21Y  z22Y
Tm1Y acmle ... xm;lY
so the matrix above is BT ® A.
Properties of Kronecker products
r11Y z12Y ... 11,Y

X@Y _ £C21Y .’bQQY

Tm1Y Tm2Y ... TonY

e vec AXB = (BT ® A)vec X. (Warning: not B*, if complex).



(A® B)(C ® D) = (AC ® BD), when dimensions are compatible. Proof:
B(DXCT)AT = (BD)X(AC)".

(A B)"' =AT®BT.

orthogonal ® orthogonal = orthogonal.

e upper triangular ® upper triangular = upper triangular.

One can “factor out” several decompositions, e.g.,

A®B = (Ulslvfk) ® (UZSQVQ*) = (Ul & UQ)(Sl X SQ)(Vl & VQ)*.

In particular, ||A ® B|| = ||A]|| B]|.

Solvability criterion

Theorem
The Sylvester equation is solvable for all C iff A(A) N A(B) = 0.

AX - XB=(C =
(I, @ A— B" ®I,,) vec(X) = vec(C).

Take Schur decompositions of A = QaUaQ%, BT = QpUpQ’%.
Then,

M=1I,9A=B" ©l,=(Qp®Qa) I, ®Us—Up®I,)(Qp®Qa)".

is a Schur decomposition.

What is on the diagonal of I,, U4 — Ug ® I,,,7

If A(A) ={\1,..., A}, A(B) = {p1,..., lin}, then on the diagonal we get
A(In®A—BT®Im) = {)\1 — My Z,]}

Solution algorithms

Solving the linear system M vec X = vecC, with M =1, ® A — BT ® I,,,,
costs O((mn)3?).

A much better algorithm is the Bartels—Stewart algorithm (1972), which
solves the problem O(m? + n?3).

Idea: invert factor by factor the decomposition

(Re®Qa) (I, ®@Us —Up®1,,)(Qp ®Qa)"

e Solving orthogonal systems <= multiplying by their transpose, O(m? +
n?) using the ® structure.

e Solving upper triangular system <= back-substitution; costs O(nnz) =
O(m? +n?).



Bartels—Stewart algorithm
A more operational description. ..
Step 1: reduce to a triangular equation.

QaUAQ4X — XQpUiQp =C
UY -YUL =D, Y=Q,XQp,F=Q,CQxp.

Let us set Lp := U (mnemonic: U / L for upper / lower triangular).
Step 2: We can compute each entry Y;;, by using the (4, j)th equation, as
long as we have computed all the entries below and to the right of Y;;.

Step 3: X = QaYQp.

Matlab source

Idea We wish to store (eventually) in E;; the numerator of the expression
that gives Y;; (with denominator (Ua)i — (LB)jj)-

As soon as we compute an entry Y;;, we update all the numerators E;; that
have terms including it.

function Y = sylv_triangular (UA, LB, E)
% solve UA*Y - Y+#LB = E with UA upper tr., LB lower tr.

[m, n] = size(E);
Y = zeros(m,n);

for j = n:-1:1
for i = m:-1:1
Y(i,j) = E(i,j) / (UA(i,i)-LB(j,j));
E(1:i-1,j) = E(1:i-1,j) - UA(1:i-1,i) * Y(i,j);
E(i,1:j-1) = E(i,1:j-1) + Y(i,j) * LB(j,1:j-1);
end
end

Exercise: show that one can solve by substitution in a similar fashion also
equations of the form UsY — YUp = E, with Uy, Up upper triangular, or
LAY —YLp =F, with La, Lp lower triangular. In which order do we need to
compute the entries of Y in each case?

Comments

e The idea works also with real Schur forms, i.e., block triangular forms
with blocks of size 1 and 2: back-substitution gives block equations which
are tiny 1 x 1, 1 x 2, 2 x 1 or 2 x 2 Sylvesters.



e A similar idea works also for X + AXB = C and AXB+ CXD = FE
(with some complications); in the latter case one needs to start with the
QZ decomposition of the pairs (4,C) and (BT,DT").

e The idea does not work for three-term equations, AXB+CXD+FEXF =
G. For those, there is no (known) way to beat O(m3n?).

Conditioning of Sylvester equations
Condition number: ratio between
Tmax(I®A-B @)= |[IT©A-B'®I| < |I2A|+[|B" @I|| < |A] +B]|
and AZ - 7B
sep(A,B) == opmin(I @ A= B' ®@1I) = minw.
z 12 F

(Note that ||[vec(X)| = | X||F-)

We have seen A\pin(I @ A— BT ®@1) = minyea(a),uea(s)|A — K
(minimum difference between their eigenvalues).

If A, B are both normal, this difference is also sep(A, B) = omin(I ® A —
BT®I ). Otherwise, omin can be arbitrary smaller than Ap;y; there is no simple
bound or expression for it.

Backward stability

The Bartels-Stewart method is backward stable (as a system of mn linear
equations); i.e., the computed X is the exact solution of a nearby linear system
(M + Aug) vee(X) = vee C + A, with [Acll/[C1, 1A /1M = O(u).

This follows from the fact that back-substitution is backward stable, com-
bined with orthogonal transformations that do not change norms.

In particular, this implies a bound on the residual,
7l = | M vee X—vec C|| < O@u)(IM[[IX|I+CI) < OW)((AI+IBINIX[+ICID-

The catch, however, is that ||X || may be arbitrarily larger than || A|, || B]|, |C]|,
when M is ill-conditioned and the separation is small.
In particular, we cannot conclude that X solves a nearby matrix equation

(A+AA)X — X(B+Ap)=C+ Ac ()

To see why, note that the backward stability relation is equivalent to the
underdetermined linear system

B N vec Ay o
XTI, I,oX Jmn} vecAp | = vee(AX — XB - C).
vec Ao

=:r

=:S

Any solution of this linear system provides a perturbed matrix equation whose
solution is X.



From standard results on underdetermined linear systems, the smallest-norm
solution of the system is given by S*r, where St is the Moore-Penrose pseu-
doinverse ST = ST(SST)~!. We have then

vec A 4 7]
vec Ag | || < ISTlr] = Tmn(S)”
vec Ac min

We would like this quantity to be O(u), when ||A]|, || B, ||C]] = O(1). We have
argued before that r ~ u||X| can be arbitrarily large than 1. We must now
study the singular values of S.

For simplicity, we shall restrict to the simpler case when m = n and X =
diag(o1,09,...,0,) is diagonal (which we can obtain by changing bases in the
original equation).

Then, we can compute explicitly SST = XX @ I, + I, ® XX + Iz,
which is the diagonal matrix with entries o? + 012 + 1 fori,j =1,2,...,n.
Hence, 0pmin(S) = /202 + 1, which equals 0 if X is singular (and X may well
be large and singular).

This analysis comes from [Higham ’93], which contains also an explicit com-
puted 2 x 2 example in which the backward error is large.

Decoupling eigenvalues
If X solves the Sylvester equation AX — XB = C, then

I -X||A -C||I X| _ [A O
0 I 0O B||0 I| |0 B|’
In a sense, a large X indicates that it takes an ill-conditioned transformation to

transform a block triangular decomposition into a block diagonal one.

Compare also with the scalar case: we know from the theory of the Jordan

form that
Al is similar to A0
0 u 0 pl|’

A 1. 25..1t/\0
g |18 notsimilar to | ]

The similarity transformation used in the first case contains )\1—“, so it breaks
down when A = p, and it becomes ill-conditioned when they are close.

if A # u, but

Applications of Sylvester equations
e Compute invariant subspaces by reordering Schur forms.
e Compute matrix functions.

e Stability of linear dynamical systems, via Lyapunov equations AX +
X A* = B, B symmetric.




e As a step to solve certain more complicated matrix equations (Newton’s
method — linearization).

We see the first one now; but we will re-encounter these equations later in
the course.

Invariant subspaces
Invariant subspace of a matrix M: any subspace U such that MU C U.

Given a basis matrix U; € C"** of U (i.e., a matrix whose columns are a
basis for U), we can find a matrix A associated to the linear operator M |;; this
means finding A such that MU; = Ui A.

If Av = v, then M (Uyv) = AUyv, ie., A(A) C A(M).

Completing a basis Uy to one U = [U1 U2] of C™, we get

i [AC
UMU_{OB.

Conversely, given matrices such that

it is easy to verify that span(U;) is an invariant subspace for M. Fzample:
given a Schur form M = QTQ*, and any k = 1,2,...,n, the span of the first k
columns of () is an invariant subspace for M.

Invariant subspaces <= block triangular decomposition <= part of the
spectrum/eigenvectors of a matrix.

Examples (stable invariant subspaces)

Idea: invariant subspaces are ‘the span of some eigenvectors’ (usually) or
Jordan chains (more generally).

Ezample 1 span(vy,ve,...,v) (eigenvectors).

A1 0

Ezample 2 Invariant subspaces of a Jordan block [0 A 1]|: span(e;) and
0 0 A
span(ey, €3).

Example 4: stable invariant subspace: vectors xg s.t. limy_,o A¥zg =0

Characterization of invariant subspaces

Theorem (characterization of invariant subspaces)
Let U be an invariant subspace of M, i.e., MU; = Uy A for a basis matrix U; of
U. Then,

e U/ = span of initial parts of some Jordan chains of M.



e A(A) C A(M) (with multiplicities).

Proof Take a full set of Jordan chains for A, i.e., a family of vectors v;;
such that (A — A\ D)vy = 0, and (A — N\ )v; j41 = v;. Here i = 1,2,...,¢,
Jj=1,2,...,k;. Since this is a full set, the v;;’s are the columns of an invertible
matrix V' (which puts A into Jordan form).

Define w;; = Uyv;;. Then, the w;; span U; and are Jordan chains for M:

0 i=1

M- NDw;; = (M — X\, Uyv;; = U (A— N vy =
( )w] ( ) 1Vij 1( )U] {UUW‘1 i1

Note that the ith chain for M may be longer than k;.

How to compute invariant subspaces?

Given a matrix M and its Schur form M = QTQ*, suppose we wish to
find the invariant subspace associated to a subset of its eigenvalues (example:
the stable invariant subspace). We suppose, for simplicity, that this subspace
is well-separated from its complement, i.e., if A(M) has multiple eigenvalues,
A(A) contains either all of them or none.

In a (complex) Schur form M = QTQ*, the T;; are the eigenvalues of A. If
the eigenvalues we seek are in leading position, 111,752, ..., Tki, then we can
simply take the first £ columns of ), which span the required invariant subspace.

Reordering Schur forms

Problem P
Given a Schur form M = QTQ*, compute another Schur form M = QT Q* that
has the eigenvalues in another (different) order.

This can be solved with the help of Sylvester equations.

It is enough to have a method to swap two blocks on the diagonal, i.e.,

Q* A Q= B ; then we can apply it repeatedly.
0 B 0 A

Note that if M = A , then M Im I CIm I.
0 = 0 0

Finding a matrix Q s.t. Q*MQ = {61 j (with @ = [Q1  Q2]) means
finding a @1 such that MQ; C Q1.

Reordering Schur forms
Let X solve the Sylvester equation AX — XB =C.

B A |



the matrix [ {] does the job, but it is not unitary. However, what matters is

that Im [)I(

We can replace [§ [] with its QR factor:

} is the inv. subspace associated to A(B).
. A C T, T .
Q = qr([§ []) is such that Q [0 B} Q= [ 61 TZ] with A(T11) = A(B),
A(Te2) = A(A).

Matlab example: computing the stable invariant subspace with ordschur.

Remark In a “true” Schur form, A, B are already upper triangular, so when
solving the Sylvester equation we only need the back-substitution part of the
Bartels—Stewart algorithm.

Sensitivity of invariant subspaces
If we perturb M to M + djs, how much does an invariant subspace U; change?

The answer is once again given by the sep(-, -) function.

We can assume U = T for simplicity (orthogonal change of basis): é spans
an invariant subspace of M = 4 C .
0 B
Theorem [Stewart Sun book, Section V.2.2]
A C da  dc
Let M = = , a =1|04||F and analogously for b, ¢, d.
0 B dop Og,
If (sep(4, B) —a —b)? — 4d(||C||r + ¢) > 0, then there is a (unique) X with

| spans an invariant subspace of M + d5;.
In particular, m is the absolute condition number of an invariant sub-

space with respect to perturbation of the matrix.

1
[XlF < 2m such that {

Proof (sketch)
Note that M + 0M = [A;;*'E‘JSA gigg |, with a small (2,1) block.
We look for a similarity transformation which zeroes out this block, with the

form
I 0 I 0 x %
[—X I} (M +6nr) {X I] = {0 *} '
Expanding out, this corresponds to the matrix equation X (A+d4)—(B+d0p)X =
d0p — X(C +06C)X for X. Note that this equation is more complicated than a
Sylvester equation, because it has a degree-2 term. It is called algebraic Riccati
equation, and we will encounter it again in the course.

We shall prove that this algebraic Riccati equation has a sufficiently small
solution X.

10



Consider the “Sylvester operator” T'=1® A — BT ® I, and its perturbed
analogous T = I ® (A+64) — X(B+0p)" ®I. Using its inverse, we can rewrite
the equation for X as a fixed-point equation.

vee X =T vee(dp — X(C +6C)X).

B(X)

Note that |77 = omin(T) > omin(T)—a—b, from SVD perturbation results:
|omin(T + E) — omin(T)| < ||E||. Recall that omin(T) = sep(A, B).
Take norms,

IXesillr < ITH(d+ 1XeFIC]F +0)).

In particular, for each r > 0, if || X||p < r then we have

10(X)| < %m )

for suitable positive coefficients @ = d, 8 = sep(4,B) —a — b = ﬁ,y =
IC]e +ec.

If we can find r such that %(a +~72) = r, then we have proved that the
continuous map P sends the ball B(0,r) into itself, hence it must have a fixed
point. This gives us the X that we need. To conclude the proof, we study the
(scalar) quadratic equation a — Br + 4r? = 0 to determine its smallest positive
root Tmin-

We switch to the reverse equation as? — s + v = 0, whose roots are the

reciprocals s+ = -1-. This gives

1 B+ +/F2—day

r+ 2c

In particular, if 32 —4a~y > 0 then there is a positive solution, and the smallest
one satisfies ry < %“ These are the two conditions that appear in the text of

the theorem.

11



Chapter 2

Matrix functions

Polynomials of matrices

d

Definition 2.1. Given a scalar polynomial p(z) = ¢o + c1z + - - + cq4z%, and a

square matrix A € C"*", we set
p(A) :=col +c1 A+ -+ cgAL.
We want to give an explicit formula for p(A) in terms of a Jordan decompo-

sition A = V blkdiag(J1, J2, ..., Js)V L.

Jordan block J, If

0 1
Jo=| " e Chxk,
1
0
then
Ch C1 ... Ck—1
c
p(Jo) = 0
c
co

This follows from evaluating the powers of Jy. If needed, we take cq41 = cqy2 =
R—

Jordan block J, If

B kxk
Jy = . GCX,

12



then

(k=1)
PN PO . E
p(Jy) = p(A)
PN
p(A)
This follows from writing the polynomial in its Taylor expansion
i A (d) A
p(@) =20 + PO 0 + 0 @) g B gy

which reduces us to the previous case. Note that the equality holds also if we
evaluate it in a matrix argument instead of z, since it follows from algebraic
manipulations with powers of A (which commute with each other).

Proposition 2.2. If A = VJV 1! is a Jordan form, and J = blkdiag(Jy, Ja, . .., Js)
with each block J; = Jx, of size k; X k;, then

p(A) P'(N) . p(?k%@)
p(A) = V blkdiag(p(J1),p(J2), ..., p(J))V ™, p(Ji) = p(N) :
P'(A)
p(X)
(2.1)

Indeed, we have

p(A) =3 a(VIV) T =V (Z ciJi) V=1 = V blkdiag(p(J1), p(Ja), - . ., p(J))V L,

and we can conclude using the previous results.

Functions of matrices [Higham book, *08, Ch. 1]
We can extend the same definition (2.1)) to arbitrary scalar functions:

Definition 2.3. Given a function f : U C C — C, and a matrix A with
Jordan decomposition as above, we say that f is defined on A if f is defined
and differentiable at least k; — 1 times on each eigenvalue \; of A, and its value
is

f(4) = Vblkdiag(f (1), f(Ja), -, f(J))V 7,

FOD PO L T

f(Ji) = 7 .
' (N)

FOM)

Note that in the Jordan decomposition J is unique, but V is not; is this
definition independent of the choice of V? To prove this, we rely on another
equivalent definition.

13



Alternate definition: via Hermite interpolation

Definition 2.4. Given f : U C C — C and A € C™*" as above, we define
f(A) := p(A), where p(x) is any polynomial such that f(X\;) = p(\;), f/(N\) =
P'(Ni), ..., FED(N) = pF=D();) for each i.

Remarks:

We shall prove soon that there always exists a polynomial p(z) that sat-
isfies these conditions.

Note that this definition does not depend on the choice of p(z) among all
the polynomials that satisfy the given conditions, since (2.1)) shows that
the value of p(A) depends only on the prescribed values and conditions.

This definition coincides with the previous Definition [2.3] again in view
of (2.1)), but it is independent of V' because p(A) is so.

If A has more than one Jordan block with the same eigenvalue, some of
these conditions are repeated. This is fine.

One may think “all matrix functions are polynomials”, but p(z) here de-
pends on A, so this is not too deep; it is like saying that “all scalar functions
are polynomials” because given any function f and z € C there is always
a polynomial such that f(z) = p(z) (for instance, a constant one).

Example: square root

Le.,

4 1
4 1
A= 4 . @)=V
0
We look for an interpolating polynomial with
1 1
p(0) =0, p(1) =2, (1) = f/(4) = 1. 1"(4) = "(4) = o
0 0 0 1| [ps 0
4342 4 1| |p2| | 2
342 2.4 1 0| |pu| | 2|
6-4 2 0 0] |po -
_ 3 3 D 2 15
p(x) = o567 T 397 + 6%
3 5 15 ’ é _16%1
= ——a 3 - 2 _— = Z
P =554~ mt Tt 2
0

(One can check that f(A)? = A.)

14



Hermite interpolation
A suitable polynomial always exists:

Theorem 2.5. Given distinct points x1, s, ..., T,, multiplicities my, ma, ..., My,
there exists a unique polynomial of degree d < mi + mg + -+ + my, such that
(for alli=1,...,n)

p(x:) = yio, V(@) =i, - D™ (@0) = Yiim,—1,
for each choice of the y;;.
Proof (sketch)

e Interpolation conditions <= square linear system Vp = y, where p is
the vector of polynomial coefficients.

e We prove that V has no kernel. If Vz = 0 for a vector z, then the
associated polynomial z(z) has roots at x; of multiplicity m;. By degree
reasons it must be the zero polynomial.

Non-Example: square root
0 1
A=y o) f@=va

does not exist (because f/(0) is not defined).

(Indeed, there is no matrix such that X2 = A: every 2 x 2 nilpotent matrix
X has Jordan form equal to A, thus X2 = 0.)

Example: matrix exponential

-1
A= bsT fe) = ewla).
1
671
exp(A) = S € . o5

Since there are 2 blocks with the same eigenvalue 1, there are only 3 interpolation
conditions rather than 4:

This is not a problem, though; we can still find a polynomial p(x) (of degree at
most 2 rather than 3) that satisfies them.

15



Note that the matrix B = exp(A4) obtained in this way coincides with the
limit of the matrix-valued power series I + A + %AQ + %AP’ + .... It is simple
to see this for the diagonal terms, since the diagonal entries of this power series
are just the scalar series for e~! and e, but more complicated to see for Bj 4.
We will prove later that matrix functions can also be computed as the limit of
the Taylor series, when one has a Taylor series for f(z) and A(A) is included in
its domain of convergence.

Example: matrix sign

1 Rex > 0,
—1 Rex <0O.

This matrix function is not constant (for general V'), unlike its scalar counter-
part.

Instead, we can recover stable / unstable invariant subspaces of A as ker(f(A)+
I).

If we found a way to compute f(A) without diagonalizing, we could use it
to compute eigenvalues via bisection. . .

Example: complex square root

A= ] sw=vE

We can choose different branches: for instance f(i) = %(1 +1), f(—i) =
1

7 (1 —1).
Polynomial: p(x) = (1 + z).

V2
111 1
-4
This is the so-called principal square root, i.e., the one with eigenvalues in the
right half-plane — other choices are possible.

Exercise 2.6. Compute g(A), where g(x) is another branch of the square root
function with g(+i) = %(il + ¢). Note that, unlike the previous one, g(A)
does not have real coefficients. (Indeed, it can’t be real because its eigenvalues

are not complex conjugate!)

16



Non-example: nonprimary square root
With our definition, if we have

1
A=S 1 St f(x) =V

2
we cannot get

1

fA) =5 -1 S—1:
V2

in our definition, we have to set either f(1) =1, or f(1) = —1, and we cannot

use both on different Jordan blocks.

This matrix is a solution of X2 = A, though.
In general, if a matrix A has multiple eigenvalues, one can find more solutions
of X? = A by choosing different signs on Jordan blocks with the same eigenvalue.

As a more extreme example, for A = I5, we can take X =V [1 _1] V=1 for

any invertible V. ...

‘Pseudo-matrix-functions’ defined in this way are called nonprimary matriz
functions; they are not matrix functions with our definition. We will not deal
with them in the course, but we just mention their existence.

Note that nonprimary matrix functions are not polynomials in A, unlike
matrix functions.

2.1 Properties of matrix functions
o f(MAM™Y) = Mf(A)M~1, since they are polynomials in A.

o f([45]) = {f(A) f((;)}, for the same reason.

e Ifthe eigenvalues of A are A1, ..., A4, the eigenvalues of f(A) are f(A1), ..., f(

Their algebraic multiplcities stay the same, but geometric multiplicities
may increase (when f'()\;) = 0).

o If h(x) = f(x)g(x) for three scalar functions f,g,h, then f(A)g(A) =
h(A). Analogously for sums and compositions. Proof: replace f(A), g(A)

g
with polynomials p(A), pg(A). Then, set pn(z) := py(x)py(x); pr(A)py(A) =
pr(A) is true (by expanding), and p,(z) is an Hermite 1nterpolant for h(x).

e In particular, if f(x) satisfies a certain scalar identity, for instance f(z)? —
2 = 0 for the square root, then f(A) does too.

e If f,, — f together with ‘enough derivatives’ (pointwise; for instance be-
cause they are analytic and the convergence is uniform), then f,(4) —

f(A).

17
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e If a sequence of matrices A4,, — A, then f(A,) — f(A). Proof: we will
see it soon; it is slightly more complicated because each A, corresponds
to a different polynomial p¢ 4,,.

Matrix functions as Cauchy integrals

The following result generalizes Cauchy’s integral formula from complex
analysis.

Proposition 2.7. If f is holomorphic (analytic) on and inside a contour I' that
encloses the eigenvalues of A,

F(A) = QLM /F F(2)(2I — A)'dz. (2.2)

Proof. Using a Jordan form A = VJV~1 € C™*™  we can reduce to the case
of a single Jordan block. Then,

z—A —1
/f (2 —J) 1dz——/f , , dz
2mi 2mi . -

f(z) f(2)
27rz fF d ﬁ fF (= )\)de

27rz fF (z /\)77 rdz

271'2 fF i\) dz

L 27mszz

by the scalar version of Cauchy’s integral formula (including the version that
computes derivatives).
O

Note that can be considered an alternative definition of matrix func-
tions. It is surprisingly general, as it works also for infinite-dimensional opera-
tors that do not have a spectrum in the classical sense, and indeed it is popular
in that setting.

Corollary f(A) is continuous in A, since the integrand f(z)(zI — A)~! is
continuous, and hence uniformly continuous on a compact set K C C\ A(4).

This proof works for holomorphic f.
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One can prove that f(A) is continuous in A also in more general settings,
e.g., A with real eigenvalues and f with enough continuous real derivatives. The
proof is more complicated.

Sketch:

e Given a sequence A,, — A, take for each n an interpolating polynomial
pn(x) of f in the spectrum of A,,.

e The coefficients of these interpolating polynomials p,(x) are continuous
in the nodes, even in a setting where some of the eigenvalues converge to
a common limit: this is not at all obvious from our proof, but it follows
from other techniques from interpolation like divided differences.

o [ f(A) = (A = [lpn(An) =p(A)[| < |IPn(An) —pu(A)]|+|lpn(4) —p(A) |,
and both terms are bounded.
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Chapter 3

Sensitivity of matrix
functions

Conditioning of computing matrix functions
Recall: the absolute condition number of a differentiable f : R™ — R" is
the norm of its Jacobian.

F(#) = f(z+h) = f(@) + Vo f -h+ o(h) implies

Kabs(f,2) = lim  sup

0 i—g)e  |IT — 2]
(0 21
Fra(fy2) = lim  sup  —2= i = Kaps(f, 2 '
(o) = fim up el U s

Fréchet derivative
The Fréchet derivative is an “operator version” of the Jacobian.

Definition 3.1. The Fréchet derivative of a matrix function f is the linear
operator Ly x : R"*" — R™ ™ (when it exists) such that

f(X+E) = f(X) + Ly x(E) + o[ E])-

Le., in a neighbourhood of X, f behaves like a linear function.

Example
flx) =22, f(X) = X2

(X+E?=X*+XE+EX+E*=X*+XE+EX+ E* .
Lyx(B)  o(lEl)
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Ly x is a linear operator that maps matrices to matrices; we can consider its
vectorized version:
L :vecE — vec Ly x (E).

In this case, R
L=X"ol+I®X.

The matrix L (an n2 xn? matrix) is the “usual” Jacobian of the map vec X —
vec f(X). So this is nothing new with respect to the usual setting in multivariate
analysis.

Example
f) =27, F) =X

(X+E) = (I+Ex Hx)™

=X ' X'EX '+ X 'EX'EX' ...

Lyfx (E) o(IlE1)

L=-XxTegx .
Properties
Follow from those of Jacobians:
® Lirgx =Lsx+Lgx.
® Ljogx = Lygx)oLgx-
o Liis0 =Lk

Example Let g(y) = /y (principal branch: we take the root in the right
half-plane), ¥ with no real nonpositive eigenvalue.

Then g(y) is the inverse of f(z) = x?, and its Fréchet derivative F = L, y (E)
is the matrix such that Ly x(F) = FE, i.e.,

XF+FX=E, X=gY)=Y"Y2

(solution of a Sylvester equation). X has eigenvalues in the right half-plane, so
the Sylvester equation is always solvable: A(X)NA(=X) = 0.

Trick to compute Ly x (E)
The following formula generalizes f ([6\ M) = {f (o/\) J}/((/{\))]v and lets us eval-
uate Ly x(E) “as fast as” f(X) for X € C?"x2n,

Theorem 3.2. Let matrices X, E € C"*™ and a function f Fréchet differen-
tiable in X be given. Then,

(5= ) )
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Proof. Set e > 0. We wish to evaluate f ( {X +0€E )EJ ) by block-diagonalizing.

Take a solution of the Sylvester equation (X +¢E)Z — ZX = —E. Then,

AP Al 9 )

By direct verification, one sees that Z = —%I is a solution. Note that we do
not need to prove that the Sylvester equation has a unique solution; even if
it were not unique, taking that particular solution Z always work for block-
diagonalization.

Hence

(5 )6 AP 2k )
A T

_[f(X +2E) f(X+eB)—f(X
S T

By the definition of Fréchet derivative,
f(X +eE) = f(X)+eLyx(E) +o(e| Ell)
when ¢ — 0. O

Exercise 3.3. Can you find an example of X, E such that the Sylvester equation
(X +eE)Z — ZX = —F is singular for each € > 07

Theorem

Let X € C™*", with eigenvalues \; and algebraic multiplicities m;. If f is
of class C*™i~! in (a neighborhood of) each of the \;, then f(X) is Fréchet
differentiable in X.

Note that matrices X inside a sufficiently small neighborhood B(X,e) of X

have Jordan block sizes in each A; of size at most m;, and X = [)g )EE} has

Jordan block sizes at most 2m;. So f()/f) exists and is continuous in X = X.
Hence, by the formula in the above proof, all directional derivatives exist and
they are continuous in X. By a standard result in multivariate analysis (known
as “teorema del differenziale totale” in Italian), then f is differentiable.

Fréchet derivative and condition number
Hence, Iiabs(f,X) = HLf,XH'

.. with some attention to what ‘norm’ means here.

The norm used for || X — X|| is any matrix norm on n X n matrices, and
|ILf x| is the ‘operator norm’ (on n? x n? matrices) induced by it.
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Easy case If we take || X — X||, it corresponds to |[vec X||2, 50 kqps(f, X) =
1Lg.xl2-

Harder cases For all other norms (|| X — X |5 in particular), there is no simple
expression for the ‘induced operator norm’.

Even with the “easy norm”, computing ||Zf,X||2 isn’t immediate. Its eigen-

values A(L r,x) are simpler, and can give us at least some partial information
on when the norm is large.

Eigenvalues of Fréchet derivatives [Higham book 08, Ch. 3]

Theorem
Let X € C™*™ have eigenvalues A1, ..., A, (with their algebraic multiplicity).
Then, the n? eigenvalues of Ly x (with multiplicity) are

FOO=FA) 2y
F A=, A A
() Ai = A
forallé,j=1,2,...,n

Proof. First of all, replace f(z) with a polynomial that interpolates X with
sufficiently high multiplicities, so that for each FE

([o x)= (v +)

and hence Ly x(F) = Ly, x(E).

PX+E)=c+(X+E)+c1(X+E)?+ea(X+EP+...
=cot+a(X+E)+ca(X?+EX+XE+E*) +e3(X2+...)
=p(X)+c1E+c2(EX + XE) +c3(X?E+ XEX + X?E)

+ -+ O(I Bl
Vectorizing,
Lix=cl+cloX+X oD+ealoX?+X o X+ (X)) ol)+
1.e.,

i Xk h Xh—l

TTM&

Now take Schur forms X = QlUlQl, XT = Q2U20)5.

d
Lix =(Q®Q) (Zpk

k=0

M=

Ushwfl)(@z@@l)*.

>
Il

1

=U



This is a Schur decomposition (orthogonal-triangular-orthogonal), so we can
read off the eigenvalues on the diagonal: if i # j we have

: : k—hyh : A= A)
Uitn(j-1),i4n(i-1) = Zpk(z AP )‘j_l) = Zpkﬁ
k=0 h=1 k=0 ? J
_ ) =) _ FO) — FO)
Ai — Aj N — A
Similarly for i = j we get f'(\;). O

Unfortunately, similar tricks don’t work with an SVD, because X2 and X
do not have the same singular vectors and values. So there is no simple formula
for the singular values of L.

Condition number bound
If X is diagonalizable, we can replace the Schur form with an eigendecom-
position, and obtain a bound.

Proposition 3.4. Let X = VAV ™! be diagonalizable. Then, for the Frobenius
norm,

Kabs (f, X) = |Ls,x|| < K2(V)? Hﬁﬂf[/\i’ Al

Then, as usual, k. (f, X) = ﬁabs(f,X)%.

This bound displays two possible causes of ill-conditioning;:
o |f[X\i, Aj]] is large, or
o ro(V) is large, i.e., X is very non-normal.

Example

Ezample f(x) = \/z (principal square root): for which choices of A(X) do
we encounter a large | f[A;, \;]|?

e );’s close to 0, and

e Pairs of close-by eigenvalues on opposite sides of the branch cut (negative
real axis).

More generally, a large f[A;, A;] may come from
e Large [/,

e pairs of eigenvalues close to a discontinuity in f.
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Chapter 4

Methods for general matrix
functions

Matrix functions arise in several areas: solving ODEs (e.g., exp A), matrix anal-
ysis (e.g., square roots), physics, ...

Next topic: how to compute them? Many methods:

e Factorizations: eigendecompositions, Schur. ..

Interpolation / approximation: replace f with a polynomial or a rational
function.

Complex integrals + quadrature,

2

e Matrix versions of scalar iterations (e.g., Newton on 2* = a),

Function-specific tricks (e.g., exp(2a) = exp(a)?),

Arnoldi.

Methods for general matrix functions

We start from methods for matrix functions in general, not restricting to
specific choices of f. [Higham book, Ch. 4]

Simplest strategy If A diagonalizable, then

f(a)
f(A) = fVAV H =VfAV =V v
f(Am)

This works fine if A is symmetric/Hermitian/normal, because we take V or-
thogonal so everything works in a stable way.
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Otherwise, errors (forward and/or backward) in the computation of f(\;)
are multiplied by a factor x(V'), possibly much higher than the conditioning of
the problem.

Even if we ignore the error in the eigendecomposition, the approximate com-
putation of the diagonal values |f()\;) — f(\i)| < €, causes an error

1F(A) = FA = V(£ (A) = F)VH < w(V)e,
so you may expect trouble if A is non-diagonalizable (again!) or close to it.

We need better algorithms for non-normal A.

Matlab example

>> A = [3 -1; 1 1+1e-15]
A =
3.0000 -1.0000
1.0000 1.0000
>> [V, D] = eig(A);
>> cond (V)
ans =
6.7109e+07
>> B =V * sqrt(D) / V;
>> norm(B~2 - A)
ans =
1.5500e-08

Why? A is very close to a non-diagonalizable matrix: [:1’) _11] has a Jordan

block of size 2 with eigenvalue 2. Knowing this information, we do much better
if we replace f(A) =~ p(A), where p(A) is the polynomial that interpolates \/x
in A = 2 with multiplicity 2.

Matlab example, continued

>> C = 1/sqrt(8) * A + 1/sqrt(2) * eye(2);
>> norm(C~2 - A)
ans =

4.4409e-16

Note that p(A) ~ f(A) is not an exact inequality though! This p(z) is not the
polynomial that appears in one of the definitions of matrix functions, since the
spectrum of A is not exactly {2,2}.

The correct thing to do would have been considering a full Taylor series for
f, which contains higher-order terms. Indeed, if all the eigenvalues of A are
sufficiently close to «, then a Taylor series in « converges to f(A); we shall
prove it soon.

Observation A good computable choice for « is the arithmetic mean of the

eigenvalues,
e 1
o=t ton 1 trace(A).
n n
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>> alpha = trace(d) / 2;

>> 1 = eye(2);

>> D = alpha~(1/2)*I + 1/2*alpha”(-1/2)#*(A-alpha*I)
- 1/4xalpha”(-3/2)*(A-alphaxI) "2

>> norm(D"2 - A)

ans =
4.4409e-16

In the case of our matrix, the series converges spectacularly fast because A is
approximately a Jordan block and hence (A — al)? ~ 0.

More generally, the more clustered the eigenvalues, the faster the conver-
gence.

Taylor series (and variants, such as rational approximants f(z) = %

O(zpdegrtdegatl) which we will see in more detail) work best when the eigen-
values of A are in a small region, but in general it is better to combine them
with other methods.

Convergence of Taylor series

Theorem [Higham book Thm. 4.7]

_ oo koo B . . .
Suppose f = > "o fu(z — a)®, with f = +—5=*, is a Taylor series with con-
vergence radius 7.

Then,
d

Jim 37 (4 —aD)f = f(4)

k=0
for each A whose eigenvalues satisfy |\, —a| < r.

Proof:
e We can reduce to the case when A is a Jordan block.

e The partial sum with d terms has pg(\) on the diagonal (truncated Taylor

polynomial), and its derivatives %pgg)()\) on superdiagonals.

. p{(ik)(x) is the Taylor polynomial of f*) of degree d — k, and it has the
same radius of convergence 7~ = lim sup( fk)l/ k since power series can
be differentiated term-by-term.

Issues with Taylor series Taylor series have two problems:

e The cost to evaluate a polynomial of degree d is O(n®d), with the Horner
rule. There are more efficient methods that reduce the cost to O(n®v/d),
but still this can be high if convergence is poor and many terms are re-
quired.
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e Convergence is poor when the eigenvalues of A are not clustered around
a certain a.

FEzxzample: exponential of a 2 X 2 matrix.
0 « cosa  sina
A= {—a O} »exp(4) = {— sina  cos a} )

For a = 30, even summing a lot of terms gives poor precision, because the
intermediate terms of the series grow a lot (the “hump phenomenon”) with
respect to the final result: cancellation.

This is a problem encountered also in the scalar case; the classical example
is computing exp(—30). In that case, we can avoid the issue by switching to the
alternative formula exp(—30) = 1/exp(30), but in this matrix case there is not
a simple solution.

Extras: Polynomial evaluation
How to evaluate polynomials in a matrix argument?

e Direct evaluation: compute powers of X by successive products, take a
linear combination of them).

e Horner method: (...(((agX + ag—1)X +aqg—2)X +...)X + aol

Bulk of the cost: d — 1 matrix products, in both cases. Unlike the scalar
case, the two methods are essentially equivalent in terms of cost.

Cheaper: divide the terms into ‘chunks’ of size approx. V/d, e.g.,
(ps A% + prA+p6)(A%)? + (ps A% + paA + ps) A® + (p2A® + p1A1 + po).

This is known as Paterson-Stockmayer method. Fewer multiplications, but re-
quires more storage.

Stability of polynomial evaluation methods
All these polynomial evaluation methods are stable only with respect to the
‘absolute value’ polynomial.

Theorem
The value Y computed by any of these methods satisfies

Y = p(X)| < O(du)(|pol + [p1]|X| + [p2]| X[* + -+ + [pal X]%).

All OK if p and X only contain nonnegative values, but in all cases in which
there is cancellation this could be troublesome (an example later).
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Parlett recurrence
When Jordan is unstable, use Schur. Can one compute matrix functions
using the Schur form of A?

If A=VTV~L f(A) =V f(T)V~1, so we reduce to the triangular case.

Ezxzample
_ t11 ti2 _ _|S11 S12
=) im=s=3 )

Clearly, s11 = f(t11), S22 = f(t22). But how to compute the remaining term

812?

Trick: expanding Af(A) = f(A)A gives an equation for sj:
511 — S22

t11812 + 12822 = S11l12 + S12t220 = S12 = {12 .
t11 — to2

If t11 = to92, the equation is not solvable and we already know (at least when
t12 = 1) that the finite difference should be replaced by a derivative.

Parlett recurrence — II
The same idea works for larger blocks (provided we compute things in the
correct order):

t11 ti2 t13 811 S12 813
T= tao taz|, f(T)=8= S22 Sa3|
t33 833

t11813 + 12823 + t13533 = S11t13 + S12l23 + S13t33.

This formula requires elements from the first subdiagonal s15 and ss3, which we
have already computed. More generally,

tiiSij — Sijtj; = E Siktk; — g tikSkjs

i<k<j i<k<j

and the RHS includes only elements from lower subdiagonals which have already
been computed.

Hence we can set up a back-substitution very similar to the Bartels—Stewart
algorithm.

(In essence, we are solving the (singular) Sylvester equation TX — XT =0
with the back-substitution technique that we have already seen, after computing
the diagonal elements by hand to obtain the unique solution with X;; = f(A4).)

To turn this into Matlab code, we need a few more observations. Each term
si; depends only on terms on below it on the same column and terms to its left
on the same row. Hence we can solve column-by-column starting from the first
rather than superdiagonal-by-superdiagonal; this is easier to write and more
cache-friendly.
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function S = funm_parlett(f, T)
% computes f(T) for upper triangular T
7% with the Parlett recurrence
n = size(T, 1);
zeros(n, n);
for j = 1:n

S(j,3) = £(T(3,3));

for i = j-1:-1:1

S(i,j) = 8(i, i:j-1) = T(i:j-1, j)
- T(i, i+1:j) * S(i+1:j, j);

S(i,3) / (T(,1) - T(j,3));

0]
]

S(i,3)
end
end

Problem: due to the T'(i,i) —T(j, j) denominator, this formula becomes very
unstable when there are equal, or close-by, eigenvalues.

>> T = triu(ones(8) + le-5*randn(8));
>> S = funm_parlett(@sqrt, T);
>> norm(S°2 - T)
ans =
1.7648e+21

Solution: the previous formulas also work blockwise, and they become Sylvester
equations. If we can partition the eigenvalues into well-separated clusters, then
we can use Taylor expansion on each cluster.

Parlett recurrence — III

Algorithm (Schur—Parlett method)
1. Compute Schur form A = QTQ*;

2. Reorder T so that it can be partitioned into blocks with ‘well-separated
eigenvalues’ (with a configurable threshold);

3. Compute f(T};) for each block (e.g., with a Taylor series centered in the
average of the cluster);

4. Use recurrences to compute off-diagonal blocks of f(T);

5. Return f(A) = Qf(T)Q*.

This algorithm tries to get the best of both worlds: we use Taylor expansion
when the eigenvalues are close, and recurrences when they are distant.

Matlab’s funm does this:
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>> T = triu(ones(8) + le-5*randn(8));
>> [S, 7, details] = funm(T, @sin);
>> details

struct with fields:

terms: 10
ind: {[1 23456 7 8]}
ord: [1 111111 1]
T: [8x8 double]
>> T = triu(randn(10));
>> [S, 7, details] = funm(T, @sin);
>> details
struct with fields:

terms: [1 181111 1]
ind: {8x1 cell}
ord: [6 86 754321 6]
T: [10x10 double]

Problems with Schur—Parlett
This is more or less the state-of-the-art method for generic functions, and
performs well in most cases, but it is not free of problems.

e What happens if the eigenvalues are not naturally divided into clusters?
E.g., a single big chunk, or a long string. Applying a degree-d Taylor
polynomial to a k x k block (with & up to n) costs O(nd) (or O(n*V/d)
with better algorithms), so if d ~ n the cost is more than cubic.

e The correct metric to use to predict accuracy is not the difference between
eigenvalues, but sep(7};,T};), which is more complicated to handle.

e Derivatives must be known (or computable). Note that funm cheats: it has
hard-coded derivatives for a small number of standard functions like @exp
or @sin, and for all other functions one must provide explicit derivatives.
(Indeed, computing derivatives automatically is more complicated.)

Extras: Parlett recurrence and block diagonalization
The Parlett recurrence is very similar to computation via block diagonaliza-
tion.

Consider the case of 2 blocks for simplicity. 7" can be block-diagonalized via

I —X][Tn Twel[I X Ty
0 I][0 Twllo I

wWlTW =
[ i

where X solves T11 X — XTay + T12 = 0 (Sylvester equation). Then

f(Tn) | -1 _ [f(T) X f(Te) — f(T11)X
f(T):W[ W= [ f(To2) ]

f(T22)
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(Note indeed that S = X f(Ta2) — f(T11)X solves the Sylvester equation
appearing in the Parlett recurrence.)

So both methods solve a Sylvester equation with operator Z — T11Z — ZT5s.
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Chapter 5

Automatic differentiation

Intermezzo: some words on automatic differentiation: a method that allows one
to compute accurately derivatives of arbitrary functions on a computer. This
is a topic that has become very popular in the recent years because of interest
in machine learning and because of better support from many programming
languages (Julia in the first place).

Problem
Given code function y = f£(x) to compute a function f : R — R, how does
one compute (or approximate) f’(z) in a given point?

function y = £(x)
Z = X % X;
W =X+ 5;
y =z % w;

5.1 Numerical differentiation

First attempt: numerical differentiation: compute g = w, with a fixed

h > 0.
Problem: Two sources of error:

e analytical error: g — f'(x) = %f”(f)h for a nearby point £ (Taylor expan-
sion).

e numerical error: because of machine arithmetic, even with perfect code

we can compute only f(x)(1 4 01) and f(z + h)(1 4 d2) with |§;] < u. So

~ x+h)—f(x

the computed value § of g = w
If(:v)\+\hf(x+h)\

is affected by an error that we

can bound with u
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So for the total error we have

G- 7@ <13 + u /O]

Assuming |5 f”(€)[,|f(z)], | f(z+h)| = O(1), this error bound is minimized when
h ~u'/? and is O(u'/?).
Hence when computing derivatives numerically with the forward difference
fl@+h) - fz)

f(a) m FEEEE S,

the best accuracy is attained when h ~ u'/2, and the error is O(u'/?). Impor-
tantly, this means that this method is not able to compute derivatives to full
precision.

Exercise 5.1. Prove an analogous estimate for the centered difference

flx+h) - flz—h)
2h '

fl(z) ~

The final result should be that the error is minimized for h = O(u'/?), leading
to an error of O(u?/?).

Example
>> x =5
x =

> h = le-4; g= (f(x+h) - f(x)) / h
g =

1.250020000097152e+02
% error ~ 10~*%
>> h = 1e-8; g = (f(x+h) - f(x)) / h
g =

1.250000025265763e+02
% error ~ 1078
>> h = le-12; g = (f(x+h) - £(x)) / h
g =

1.249986780749168e+02
Y% error ~ 1074

Complex step differentiation
A similar trick: if f is holomorphic, and your code to compute it works also
for complex inputs, then for z € R one can write

ﬁx+ﬂw:f@y+fuﬁh—i%9h?+om%,
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S0 g = W is an approximation of the derivative f’(x) with error g —
f'(z) = O(h?).

Typically, the numerical error on Im f(x +ih) is ~ [Im f(z + ih)ju = O(h)u
(but if real/imaginary parts are ‘mixed’ in computation, it may get as large as
~ |f(z)lu= O(u)). Hence

- O(h
i /@) <o)+ Py

The total error is O(u) as long as h < O(u'/?).

Example
>> x =5
X =

>> h = le-4; g = imag(f(x+1i*h)) / h
g =

1.249999999900000e+02
>> h = le-8; g = imag(f(x+1ixh)) / h
g =

1.250000000000000e+02
>> h = le-12; g = imag(f(x+1i*h)) / h
g =

1.250000000000000e+02

Key idea
We obtained a better bound by exploiting the fact that our code runs also for
a more general type (complex numbers).

5.2 Automatic differentiation

Automatic differentiation via matrix functions
Suppose our code works also for matriz arguments x, which we can achieve
in Matlab with some changes:

function y = f(x)
n = size(x, 1);
Z =X * X;
W = x + bxeye(n);
y =2z % w;
Then,
1 ) oy B

f ALl )= f) ()
A fN)
No “small h” and subtractions are needed this time — the derivative can be
computed with error O(u).
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Automatic differentiation
This is a form of automatic differentiation.

e It typically computes derivatives up to machine precision error O(u), by
running the code with more general types.

e It can compute also higher derivatives.
e It works also for z € C, unlike the complex step trick.

e It is something fundamentally different from numerical differentiation; it
is more similar to symbolic differentiation with a computer algebra system,
but easier to do algorithmically.

e It works also if your code includes loops, conditionals, and more compli-
cated functions.

function y = somefunction(x)
a = x*¥x + 1;
z =2/ a;
while z < 5
z = 2z2"2;
end
y = exp(z);

This function is not continuous at “decision points” (when z = 5 at some
iteration of the while). However, in all other points it is C*°, and we can
compute its derivatives with the same method.

function y = somefunction(x)
n = size(x, 1);
a = x*x + eye(n);
z =2 % inv(a);
while z(1,1) < 5
z = 2z2"2;

end
y = expm(z);

What is going on
Actually, we do not need matrices here: all operations are on triangular
Toeplitz matrices, i.e., polynomials in

01 0
e =10 0 1
0 0 O
So
a b ¢
0 a bl =al+be+ e
0 0 a
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We can just work in the polynomial algebra Cle], with the relation 3 = 0.

This interpretation reveals that what we are really doing is propagating Tay-
lor expansions: instead of the input z, for instance x = 5, we start from 5 + ¢,
and whenever we compute a variable we compute the first n coefficients of its
Taylor expansion in ¢ alongside it; for instance given code

function y = £(x) % input: x=5
z =X % x; %z is 25
w=x+5; % wis 10
y=2z*w; %y is 250

we can use it to compute two derivatives (n = 3) alongside it:

function y = £(x) % input: x =5+¢ =5+ le + 0e2 + O(e?)
z=x%3x; %z is (5+1e+0e2+ 0(€?))(5+ le + 02 + O(&3))
=25+ 10e + 1% + O(e?)

x+5; %wis (5+1e+0e24+0(e3)) +5

=10+ le + 02 + O(&3)

z * w; %y is (25 + 10 + 12 + O(£3))(10 + 1e + 0e2 + O(e?))
% y = 250 + 125¢ + 202 + O(&3)

==
I N

< s
e

From this Taylor expansion we can read off the first two derivatives of y = f(x)
inx =5.

How do we get the computer to do all this automatically without writing
ad-hoc code? With object oriented programming.

e Define a class Taylor that encapsulates a length-3 vector.

e Write special code that is run when one writes atb or a*b with Taylor
arguments (operator overloading). This is done in Matlab by defining
methods plus and mtimes.

function y = £(x) % input: x = Taylor[5 1 0]
z=3x % x; % z = Taylor[5 1 0] * Taylor[5 1 O]

% z = Taylor[25 10 1]

w=x+5; % w=Taylor[5 1 0] + Taylor[5 0 O]

% w = Taylor[10 1 0]

y =2 % w; %y = Taylor[25 10 1] * Taylor[10 1 0]
% y = Taylor[250 125 20]

Rules for operations:

e A real a is converted to Taylor[a O 0]

e Taylor[a0, al, a2] + Taylor[bO, bl, b2] = Taylor[a0+b0, al+bl, a2+b2]

e Taylor[a0, al, a2] * Taylor[bO, bl, b2] = Taylor[a0*b0, al*b0+al0*bl, a2*bO+al*bl+al*b2]

Matlab is not the best language in the world, but it can do OOP, too.
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In Matlab

classdef Taylor
properties
coeffs Ylength-3 vector
end
methods
function obj = Taylor(v) Yconstructor
obj.coeffs = v;
end
function ¢ = plus(a, b)
if isa(b, ’double’), b = Taylor([b 0 0]); end
c = Taylor(a.coeffs + b.coeffs);
end
function ¢ = mtimes(a, b)
¢ = Taylor([a.coeffs(1)*b.coeffs(1),
a.coeffs(1)*b.coeffs(2) + a.coeffs(2)*b.coeffs(1),
a.coeffs(1)*b.coeffs(3) + a.coeffs(2)*b.coeffs(2) + a.coeffs(3)*b.coeffs(1)]);
end
end
end

Automatic differentiation, generically
For any elementary operation z = f(a,b,...), we can update derivatives
alongside according to composite-function differentiation rules:

Z/_ﬁ/_’_gb/

“ 0" T
9% f of 92 f of
"o_ "2 /i /\2 ZJogn
z —OGQ(a) + 5,9 +052(b) +(’)bb +...

The formulas get lengthy for higher derivatives.

Global derivatives updated according to local rules for each line of code.
Each operation that we use needs to be “augmented” to specify how it acts
on derivatives. If we define for our type Taylor each operation appearing in
our code (ab,a/b,exp(a),...), we can effectively compute derivatives algorith-
mically.

Again, the key is having code that supports different types and operator
overloading.

Special case: dual numbers
The most common case is when one only needs one derivative.

An algebraic structure that reflects the formalism for this case: the ring of
dual numbers, i.e., R[e]/(?).
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e Each member of the ring can be written as a + ¢b, for a,b € R (or any
other base ring).

e Operations are performed with usual algebraic rules plus 2 = 0; for in-
stance, a * b when its argument are dual numbers becomes (a + ea’)(b+
eb') = ab+ (a'b+ al)e.

e f/(x) is equal to the “epsilon part” of f(z + ¢).

5.3 Reverse mode

This is called forward mode of automatic differentiation. There is also a reverse
mode which is more popular in some contexts; most notably machine learning,
where it is known as back-propagation.

We give an idea of how it works, for n = 1 derivatives.

General idea: After having computed y = f(x), revisit your code backwards

line-by-line and for each intermediate variable a appearing in it determine iter-
. dy
atively 2.

This manipulation requires more complicated source code transformations
to the code than forward-mode; introducing new types is not sufficient.

Typically it is performed via a computational graph representation of the
operations in the code.

Reverse mode: example

function y = £(x) % input: x=5
z=x*x; % 2 =2r=10

w=x+5;%g—“;:1 )
y =2z %w; % 0—3}:z:25, %:wzlo

Using these edge derivatives, we work our way right-to-left and compute

starting from % =1

Dy Ay O0u s Ay _ Oy,
dw  dy dw dz dyoz

dy dyow dy 0z
=2 4+ 22 =95.14+10-10=125.
dx dw8x+dzax o 1410410 °
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The multivariate case

The same ideas (both forward and reverse mode) work in the multivariate

case, with Jacobian matrices in place of scalar derivatives. Composition 2% 2%

. R . ow Ox
~ matrix multiplication.

For a function f:R"™ — R™:

Forward mode: for each intermediate variable w € RP, store its Jacobian

% € RP*™ Whenever an instruction computes z from w, multiply on the left:
dz _ 0z dw

dz ow dx * . i . . .
Reverse mode: for each intermediate variable w € RP, store its Jacobian

% € R™*P, During the reverse part, for each z on which w depends, multiply

dy ow
dw 0z *

bt Y _
on the right: 57 =

. . . . dy - .
Forward mode can also compute only a directional derivative ¥ in a direc-

dv
tion v, i.e., the matrix-vector product %v: just start from 9Zy = v instead of

dr _ 7 dz
dz .

Similarly, reverse mode can be used to compute only wT%, but this is
typically less useful.

Complexity

Which one to use?

When one among n and m is much larger than the other, the cheapest mode
is the one that works with smaller matrices.

For a function f : R™ — R™ with n < m that is the composition of many steps,
the forward mode is faster because all intermediate Jacobians are tall-thin.

For a function f : R™ — R™ with n > m that is the composition of many
steps, the reverse mode is faster, because all intermediate Jacobians are short-
fat.

Machine learning = fitting functions with a large number of parameters
B € R™, by minimizing a certain scalar error function F(8) € R. And that’s
why reverse mode (backpropagation) is used there.

Neural network training happens via gradient descent, so reverse-mode au-
tomatic differentiation (known in the field as back-propagation) is one of the
main ingredients.
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Chapter 6

The matrix exponential

The matrix exponential
We will now discuss some specific important matrix functions. First one:

1 1
mmmzl+A+?ﬁ+gﬁ+”“

Note: in Matlab, exp(A) does entrywise exponentiation; one must use expm
to compute the matrix function. This non-feature is often annoying, exactly
like the fact that A + 1 does not return A + 1.

Useful to recall it: the solution of the ODE initial value problem

d
ﬁv(t) = Av(t), v(0) =g (6.1)
is v(t) = exp(At)vg. Proof: we can differentiate term-by-term

t2 3.
vm:%+mm+§£m+§ﬁw+m.

For this reason, often we are concerned with computing exp(At) for several
values of t € R.

Nice fact: applying the explicit Euler method to the IVP produces the
approximation exp(A) &~ (I + 1 A)".

Note that exp(A + E) # exp(A) exp(F), in general; this equality holds only
if A and E commute!

How to compute exp(A)?
It is easy to come up with ways that turn out to be unstable. [Moler, Van
Loan, “Nineteen dubious ways to compute the exponential of a matrix”, '78 & ’03].

Ezample truncated Taylor series, I + A + %A2 + %A?’ R %Ak.
(See example in the previous slide set.)

Ezample exp(A) ~ (I + LA)",
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Growth in matrix powers

The main problem: on non-normal matrices, the coefficients exhibit inter-
mediate growth.

Ezample Even on a nilpotent matrix, entries may grow.

0 10 0 0 100 0 0 0 1000
B 0 10 > | 0 0 100] 5 00 0
A= 0 104" 0o o |4~ 0 0
0 0 0

Typical behavior for non-normal matrices. In general, we can bound
Lazy Ly LAz Liape Al
lexp(A)| = ||T+ A+ 55 A% + A% || < TH{|All+ AP+ 5 | AP+ = el 4,

but this bound may be very loose, as there may be important numerical can-
cellation between the factors: growth + cancellation = trouble.

Exception: normal matrices are nice! Since a normal matrix can be diago-
nalized orthogonally, || A5 = ||A||5, and power series work well.

“Humps79

Similarly, even for a matrix with A(4) C LHP, exp(tA) may grow for small
values of ¢t before settling down and converging to 0.

FEzample [Higham book, Ch. 10]

>> A = [-0.97 25; 0 -0.3];

>> t = linspace(0,20,100);

>> for i = 1l:length(t); y(i) = norm(expm(t(i)*A)); end
>> plot(t, y)

In particular, you can expect intermediate growth and then cancellation that
causes instability if you try to compute matrix exponentials exp(A) with any
method that uses power series or “goes through” other values exp(At) with
t < 1, for instance by solving the ODE problem

X'(t) = AX(t), X(0)=1.

Exception: again, everything works well for normal matrices.

e A — a Al — maxRe()\).
Jexp(A)] = max |e*] = e
In particular, |[exp(tA)|| = |lexp(A)||}, so plotting the norm produces an expo-

nential decrease (or increase) without “humps”.

Fréchet derivative of the matrix exponential
Using the same argument that we have used to compute the eigenvalues of
Fréchet derivatives, we can obtain
1 1
Lexp.alB] = B + 5;(BA+ AE) + 5(EA2 + AEA+ A’E) + ...
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This formula is typically not very useful; a more useful one is the following
integral form.

Proposition 6.1.

Lexp,a[E] = /0 exp(A(1 —t))E exp(At) dt.

Proof. Expand the integral as

1 o i
RHS:/ > A EZA]t
0 ,—o

= Z A'BAT— (1 — )7 dt
Z'j

7.70

Z A’EAJ = LHS.
i,j=0 +1)

To get to the last line, we have used a classical scalar integral (the one that
defines the Beta function). You can have fun computing that by induction, if
that’s your thing. O

Using the integral formula, we can bound the norm of Lexp 4[E] and hence
the condition number of the matrix exponential.

1
[ Lexp, a[E| S/ =D el 41t gt = el B
0

This is not good news, because we have shown that ell4l may be much larger
than ||exp(4)].

Exception: for a normal matrix, ||exp(tA)| = |lexp(A)
the tighter bound

|*, and hence we get

[ Lexp, a[ET|| < [lexp(A) [ E]l,

which leads to
Krel(exp, A) < ||A].

This bound on the condition number is tight: indeed, when F = I the formula
gives Lexp, a[I] = |lexp(A)]|, hence k¢ (exp, A) > ||A| for each matrix A.

6.1 Scaling and squaring

We now describe the method used in Matlab’s expm, which is the state-of-the-art
one.
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Padé approximants
Padé approximants (in a? = 0 here for simplicity) are rational Taylor-like

approximations: f(x) = ) 4+ O(xPtat1) with deg N = p,deg D = q.

D(z
p+q+1 coefficients (up to scaling) to be determined from p+¢g+1 equations.
Padé approximants for the exponential are known explicitly.

Padé approximants of degrees (p, q) to exp(x)

:Ep: p+q—y )P
= (P +9)5'p - 5)!

Dypg(x) = Npg(—2).

)

Since D(z) = N(—x), Padé approximants satisfy the same property as the
exponential exp(—zx) =

exp(x)

Padé approximations of the exponential
We can use this rational approximation to compute matrix functions:

exp(A) ~ (qu(A))_leq(A)'

Question 1 Is Dp,(A) going to be well-conditioned, though‘?

For p = ¢ — oo, the jth coefficient of Ny, tends to QJ 577 (direct verification),
hence N,,(z) = exp(flx)

Re A\

Thus £(Dpp(A)) ~ %

D, (A) is ill-conditioned if Re(Amax — Amin) is large.

Question 2 Can we bound the error of this approximation?
Backward error of Padé approximants

Are Padé approximants reliable when || A|| is small, at least?

Let H = f(A), where f(z) = log(e“‘%). Note that e_“% =1+
O(xPTa+1) 50 the log exists for 2 sufficiently small.
H is a matrix function, so it commutes with A, an we can expand as if they

were scalars: exp(H) = exp(—A)(Dpy(A)) "IN,y (A), so
(Dpg(A)) ' Npy(A) = exp(A) exp(H) = exp(A + H)

(since A and H commute).

We can regard H as a sort of ‘backward error’: the Padé approximant
D,.(A))"1N,,(A) is the exact exponential of a certain perturbed matrix A+H.
Pq pq

H
Can one bound H?
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Bounding ||H ||

H = f(A), where f(x) = 10g(€—x%)'

f is analytic, so f(x) = c;aPTIHL 4 couP a2 4 cgpptats

H = f(A) = ClAp+q+1 + C2Ap+q+2 + Cgﬂ?p+q+3 + e
[H || < e [[JAIPFIE + fea| [APFIF2 4 Jes || AJPFI72 4.

All these coefficients can be computed, by hand or with Mathematica (but
it’s a lot of work).
Luckily, someone did it for us. For instance:

[Higham book ’08, p. 244]
If p=¢q =13 and [|A|| < 5.4, then % < u (machine precision).

Degree 13 achieves a good ratio between accuracy and number of required
operations (with Paterson—Stockmayer 4+ noting that numerator and denomi-
nator are of the form p(z?) + xq(z?).) Evaluating Ni313 and D133 requires 6
matmuls.

6.2 Some Matlab computations

Computing Padé approximants

>> syms x abcde

>> T = taylor(exp(x), x, 0, ’Order’, 5)

T =

x"4/24 + x°3/6 + x"2/2 + x + 1

>> D = x"2+axx+b;

>> N = c*xx™2 + d*x + e;

>> collect (expand (T*D-N))

ans =

x"6/24 + (a/24 + 1/6)*x"5 + (a/6 + b/24 + 1/2)*x”4 + (a/2 + b/6 + 1)*x"3 ...
+ (a+b/2-c+ D*xx"2+ (a+b-d*x +b -e

>> C = coeffs(collect(expand(T*D-N)),x)

C =

[b-e,a+b-d, a+b/2-c+ 1, a/2 +Db/6+ 1, a/6 + b/24 + 1/2, a/24 + 1/6, 1/24]

>> S = solve(C(1:5),[a,b,c,d,e]);

>> [S.a, S.b, S.c, S.d, S.e]

ans =

[ -6, 12, 1, 6, 12]

Accuracy of Padé approximants

>> ezplot(exp(x), -5, 5);
>> hold on;
>> ezplot (pade(exp(x), x, ’Order’, [2,2]), -5, 5);
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We saw that D(A) ' N(A) = exp(A + H), where H = f(A) corresponds to the

matrix function f(z) = log(exp(—=z) ggg)

>> P = pade(exp(x), x, ’Order’, [2,2]);
taylor(log(exp(-x)*P), ’Order’, 20)

\4
\4

—
]

- x719/98035826688 - x~17/7309688832 + x~13/38817792 + x~11/2737152 ...

- x77/12096 - x~5/720
>> AbsC = abs(coeffs(T,’All’))
AbsC =
[ 1/98035826688, 0, 1/7309688832, 0, 0, 0, 1/38817792, 0, 1/2737152,
0, 0, 0, 1/12096, 0, 1/720, 0, 0, O, O, O]
>> % Solve |C|(x) = 2e-16
>> double(solve(C * x. transpose(19:-1:0) - 2e-16, x, ’Real’, true))
ans =
3.1037e-03

This shows that the “backward error” of the Padé approximation is bounded
by 2 x 10716 when || A|| < 3.11 x 10~2 — more or less; we have neglected terms
past 220 in the Taylor expansion; these have very small coefficients but they do
count. There is a full proof that bounds rigorously the sum of the series in the
interesting paper [Moler, Van Loan, “Nineteen Dubious Ways to Compute the Exponential

of a Matrix”].

Remark

The same technique (both to construct Padé approximants and to evaluate
their backward stability) can be applied to other functions as well; the expo-
nential is just a nice example.

In general, rational approximation methods work well only when the eigen-
values are in a sufficiently small region.
6.3 Scaling and squaring
What if [|A]| > 5.47 Idea: let us use the identity exp(A) = (exp(LA))*.
Algorithm (scaling and squaring)

1. Find the smallest s = 2* such that || Al < 5.4.

2. Compute F = D13’13(B)71N13713(B), where D13,13 and N13713 are given
polynomials and B = %A.

3. Compute F 2* by repeated squaring.

This algorithm is used in Matlab’s expm, currently (more or less — approx-
imants of degree smaller than 13 are used in some cases).

46



Note Very recently, better techniques to evaluate matrix polynomials have
been found, making Taylor expansions more competitive.

Is scaling and squaring provably stable?
Note that ‘humps’ may still give problems: exp(B) may be much larger than

exp(4) = exp(B)2k7 leading to cancellation when one computes the squares.

So scaling and squaring does not avoid the intermediate growth problem
either, but it’s still the best algorithm available and is stable experimentally.

6.4 Argument reduction

Argument reduction
Suppose A = B + 71, for a certain B € C**™ and 7 € C. Then,

exp(A) = exp(B + 7I) = exp(B) exp(7]) = exp(B)e™7,

since B and 71 commute. This formula has two interesting applications.

The first is computational savings: if || B|| < ||A[|, it will take fewer scaling
and squaring steps to compute exp(B) rather than exp(A).

The second is this result that has applications to Markov chains.

Essentially non-negative (or Metzler, or -Z) matrices
Suppose A;; > 0 for all ¢ # j (the elements on the diagonal can be anything).
Then exp(A);; > 0 for all ¢, j.

Proof For a suitable 7, B= A+ 71 > 0, and hence
=1
exp(A) = exp(—7I + B) = exp(—7I) exp(B) = e~ 7 Z yBk > 0.
k=0

This formula uses only sums and products of non-negative numbers, hence there
is no numerical cancellation and all computations are accurate. We do not see
the details, but the matrix exponential can be shown to be very well-conditioned,
even in the componentwise sense. [Shao, Gao, Xue, ’14]
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Chapter 7

The matrix sign function

The matrix sign function

1 Rex > 0,
sign(z) = ¢ -1 Rez <0,
undefined Rexz = 0.

Suppose the Jordan form of A is reblocked as

A= | mow

Jo
where J; contains all eigenvalues in the LHP (left half-plane) and J; in the
RHP. Then,

I 1

v

sign(A) is always diagonalizable with eigenvalues +1.

sign(4) = [Vi V3] [‘

Application: computing eigenvalues by bisection
Given M € C™*" set A := aM + BI for suitable o, 8 € C, and compute
S = sign(A). Then, with the notation in the previous slide,

(S — 1) =Im [Vi V3] [_21 .

} Vi Vo] ' =ImV;.

Here Im V7 is the invariant subspace associated to the Jordan chains of A with
negative real part (Hurwitz stable invariant subspace), i.e., {u € A(M) : Re(ap+
B) < 0}. In particular, if we let @ be the orthogonal factor in qr(S — I), then

amo= 7 ).

as A and M have the same Jordan chains and invariant subspaces. In particular
M, contains the eigenvalues inside the half-plane Re(az + 3) < 0.
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This can be seen as the first step of a bisection procedure to compute the
eigenvalues and eigenvectors of M: we have split the spectrum into two (hope-
fully equal) subsets; now we can repeat the procedure on M; and M, with new
values of a, 5.

7.1 The Schur-Parlett method

Schur—Parlett method

A first algorithm to compute sign(M) comes from the Schur—Parlett strategy.
Compute a Schur decomposition of M, reordered so that eigenvalues in the LHP
come first, to obtain

Q*MQ = [‘3 g} , A(A)C LHP,A(B) C RHP

hence
asone= 4 7

where Z solves
AZ —ZB = f(A)C - Cf(B) = —-2C. (7.1)

We can then summarize the Schur—Parlett algorithm for the matrix sign as
follows.

1. Compute a Schur decomposition M = QT Q™.

2. Reorder it so that eigenvalues in the LHP come first.

3. Compute Z by solving the Sylvester equation (7.1)) (which has triangular
coefficients).

4. sign(M) = Q[_OI ?]Q*

function S = sign_schurparlett (M)
% Computes the matrix sign function with the Schur-Parlett method

n = size(M, 1);

[Q, Ul = schur(M, ’complex’);

% overwrite Q, U with their reordered version
[Q, U] = ordschur(Q, U, "lhp");

% count the number of eigenvalues in the LHP
p = sum(real(diag(U)) < 0);

=
]

U(l:p, 1:p);
U(p+l:n, p+l:n

(oo}
1]
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C=U:p, ptl:n);

% Matlab function to solve a Sylvester equation
% Note that Matlab’s syntax has different signs
Z = lyap(A, -B, 2xC);

S = zeros(n, n);

S(1:p, 1:p) = -eye(p);

S(1:p, ptl:end) = Z;

S(ptl:end, p+l:end) = eye(n-p);

S = Qx3xQ’;

% If M is real, S=sign(M) is supposed to be real,

% but the computed one will have a tiny nonzero imaginary part,
% due to complex arithmetic in the Schur form.

% We remove it if that is the case.

if isreal(M)
S = real(S);
end

Note that this algorithm is worthless for our computing-eigenvalues-via-
bisection application, because it requires the Schur form, which reveals the
eigenvalues already. Before seeing a different algorithm, we expand on pertur-
bation theory.

7.2 Perturbation theory

The general results that we have obtained for perturbation of functions of ma-
trices show that for a diagonalizable matrix M = VDV ~! the condition number
of the matrix sign satisfies

1

max —_——-
AEA(M)NLHP |A — p
pEA(M)NRHP

Kaps (sign, M) < k(V)?

This result is slightly misleading, though, because of two reasons:

e The factor x(V)? may be an overestimate, because if we think in terms
of invariant subspaces we see that the difficulty is separating the two
invariant subspaces relative to the LHP and RHP, which in general is a
more well-conditioned task than a full diagonalization.

e For matrices with small separation, another source of error amplification
comes from the fact that ||sign(M)]| is itself large. Indeed, taking norms
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in the vectorized form of (|7.1]) gives

- 2]l
Z| <l U®A-B"aI)7'||2C] = ——=-.
1211 < 1T © 4= B & DIRC) = 2 o
A more accurate result is the following.
Theorem 7.1 ([R_\'m's Mehrmann He ’5)7]). Let M = Q[’g g]Q* as above, with

sep(A, B) =4, and let |E||r = € be sufficiently small. Then,
1.

sign(M + E) — sign (M)l _ (€
[sign ()] =0(5):

2. However, the Hurwitz stable invariant subspace of M + E is Q[ %], where
1X][r = O(5).

So the sign is highly ill-conditioned in presence of a small separation §, but
the Hurwitz stable invariant subspace that we can compute with it is better
conditioned. This is good news for our application.

Proof. Assume @Q = I, up to a change of basis. Part 2 follows from the pertur-
bation result for invariant subspaces: if M + F = {g %}, there exists X with
| X||r = O(5) such that

e om0 5]

We can continue from here to compute the sign. 5 5
If ¢ is sufficiently small, A(A+ CX) C LHP, A(B — XC) C RHP, hence
sign(M) = {é ?} for a certain matrix Z. Arguing as in the Schur-Parlett

method, we must have sign(M)M = M sign(M), hence Z solves

(A+CX)Z - Z(B—-XC) =2C.
[ P [ O

The coefficients of the Sylvester equation for Z are a perturbation of magnitude
O(5) of those of AZ — ZB = 2C. We can apply the following classical result
for perturbation of linear systems.

Lemma 7.2. Let x be the solution to Tx = ¢, and & be the solution to (T +
Or)Z = c. Then,
[Z — x| . 6z |

< IQ(T)W.

]
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Note that, unlike its counterpart for a perturbation of the RHS vector c,
this result for a perturbation of the matrix T holds only up to terms of order

2 .
(HH&TTHH) : indeed, the symbol < stands for a first-order inequality.

Applying this result to the vectorization of AZ — ZB = C, we get

= . 9 9
1Z-Zlr £ 0)Zllr = O Zllr.

Plugging this into (7.2]) shows that ||sign(M + E) —sign(M)|| = O(£)||Z]||r =
O(57) lIsign(M)] - O

7.3 Newton for the matrix sign

We wish to see that the iteration
1

s+ X, Xo=M (7.3)

X1 =

satisfies limy_, o0 X5 = sign(M).
To study the behavior of this iteration, let us start from the case when
M =V diag(A1,. .., \,)V 1 is diagonalizable. Then it is easy to see that

X, = Vdiag(f(A1),..., fOu))V ™,

where f(z) = 4 (z + 2), the map that corresponds to the scalar version of the
iteration (7.3)). Similarly, by induction,

Xy, = Vdiag(fo* (A1), ..., fEO)) V!

(we use the symbol f°* to denote the composition of f with itself k times).

The map f(x) is the one obtained by applying Newton’s method to solve
the equation 2 — 1 = 0; this explains the name of the method. The map f(z)
has two fixed points +1, with (locally) quadratic convergence.

Convergence analysis of the scalar iteration

Theorem
The limit of 241 = % (xk + i) is sign(xg) (for Re(xg) # 0).

Trick: change of variables (Cayley transform)

x—1 . 1+y
y = ——, with inverse x = ——.
rx+1 1—y
If x € RHP, then |z + 1| > |x — 1] = y inside the unit disk.

If € LHP, then |z — 1| > |z + 1| = y outside the unit disk.
(It’s a Padé approximant of exp(—2z), with the same property.)
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If yp =

x’;jr} for each k, then yy41 = yi (check).

x

20 € RHP = |yo| <1 = lim yp =0 = lim a3 = 1;
k—o00 k—o00

rg € LHP — ‘y0|>1 = lim ypy =00 = lim z; = —1.
k—o0 k—o0

Rational approximations of the step function
Let g(x) = 3(z + 1/x); then its iterates g°* are rational approximations of
the step function sign(z) around —1 and 1.

>> syms X

>> g = 1/2%(x + 1/x);

>> g2 = simplify(subs(g, x, g))
>> g3 = subs(g2, x, g)

>> fplot(g, [-2,2])

>> axis([-2 2 -2 2]);

>> hold on

>> fplot(g2, [-2,2])

>> fplot(g3, [-2,2])

(They diverge badly around 0, though.)
From the coefficients of g2, g3, one can infer that the following general
formula holds.

Proposition 7.3.

l‘) — ((1 + I)Qk)even _ (1 + I’)2k —+ (1 _ I’)2
(1+2)%)oaa (L+2)2 —(1—2)2"

Proof. Induction. O
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This rational approximant can be obtained by imposing approximation prop-
erties in two different points, unlike one for Padé approximant: ¢°*(z) is the
only degree-(k, k — 1) rational function that satisfies g°*(z) — sign(z) = O(ka)
for both x — +1.

Alternatively, it can be obtained if one starts from

(x2)1/2
x

sign(z) =
and replaces the principal square root z'/2 with a Padé approximant in 1.

Convergence analysis of the matrix iteration
A modification of the convergence proof for the scalar case works in the
matrix case.

Theorem 7.4. Let Xqg = M have no purely imaginary eigenvalues. Then, the
sequence X1 = 3 (Xi + Xk_l) converges to sign(M).
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Proof. Set S = sign(M). Note that all the X}, are rational functions of M, so
they commute with it and with S. We can assume (up to a change of basis) that
M is upper triangular, in Schur form. Then S and X} are upper triangular,
too.
Set
Vi = (Xp — S)(Xx +5)7 %

Analyzing eigenvalues: the inverse (X + S)~! exists, and we have p(Yy) < 1.

Vigr = (X HX7E + 1T —2SXp) Xp (X7 + 1T +25X,) 7! = Y2

It is clear in this form that we have Y, — 0.
We can now express Xy, as a function of Yj: since everything commutes,

VX, +Y,S=X,. -5 = X, = S(I-Q-Yk)(f—yk)il.

hence X3 — S. O
The algorithm

1. Xo= M.

2. Repeat X1 = %(Xk + X,:l)7 until convergence.

We really need to compute a full matrix inverse here; this is unusual in
numerical linear algebra.

Scaling

Unfortunately, this iterative method requires a large number of iterations if
the starting matrix M has a norm that is particularly large or small. Indeed, if
i > 1, then

1 1 1
Thtl = 5 xk‘f‘?k %51‘1@7

and “the iteration is an expensive way to divide by 2” [Higham].
Same if xp, < 1: the iteration just multiplies by 2.

Solution: we can replace M with uM for any scalar p > 0, since sign(M) =
sign(uM). A good choice of p will avoid this initial phase in which the method
spends iterations just to get the eigenvalues close to 1.

Choices of scaling

Ideally, we want to choose p so that the eigenvalues of M are “as close to 1
as possible”.

Possibility 1: (determinantal scaling): choose p = (det M)~1/", so that
det M = 1. This choice reduces the “mean distance” from 1. This determinant
is cheap to compute, since we already need to invert M, and methods to do it
(e.g., PLU factorization) typically produce the determinant as a byproduct.
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Possibility 2: (spectral scaling): choose u so that [Amin (M) Amax(M)] = 1.
We can use a few steps of the power method on M and M ~! to obtain cheaply
estimate of these two extremal eigenvalues.

Possibility 3: (norm scaling): choose p so that omin(WA)omax(pd) = 1.
Again we can use the power method to get cheap estimates.

All these methods work reasonably well in practice. It is important to use
one, at least at the first iteration, but which one does not matter much.

(Matlab examples)

Stability of the Newton iteration
The analysis of (floating point) stability of the Newton iteration is compli-
cated. [Bai Demmel '98 and Byers Mehrmann He ’97]

Even though the algorithm contains only sums and inversions, it is difficult
to assess and propagate the impact of numerical errors in the first steps, which
are the most ill-conditioned ones.

TL;DR The stability analysis reflects the results of our conditioning analy-
sis: while the sign in itself is unstable, it produces invariant subspaces as good
(numerically) as those computed via a reordered Schur decomposition.

Extras: Inversion-free sign

Suppose that we are given M, N such that A = M~'N. Can we compute
sign(A) without inverting M? Yes.

Idea: suppose that we can find M, N such that MN~1 = M~'N. Then we
can write

1 1
X, = 5(A+A—1) = Q(M_1N+N_1M)

1
5M—l(N +MN~*M)

1 N
5M—l(N + M INM)
1
2

M~'M~YMN + NM)

~ 1 - A
(MM) 5(MN+ NM) =: M; ' Ny.

Similarly one can produce My, Na, M3, N3, ... o

How do we actually find M, N such that MN~1 = M—IN?

We can rewrite this relation as MM = NN, or [M N} {A]{,} = 0. The
rightmost matrix has full column rank, if M is invertible; hence we can obtain

M, N from any basis of ker {_J\]{f} .
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Computing this kernel can be a more well-conditioned task than inverting
M and/or N, e.g.,

|
=2
I
O O
— o 0 O

All this is a sort of ‘linear algebra on matrix pencils’: we map the matrix
pencil N — xM to N1 — xM;. There is one final project on this topic.
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Chapter 8

The matrix square root

Next (and last, for us) matrix function: square root. Here and in the following,
we focus on the principal square root, i.e., the only square root in the right
half-plane:
. .0
f:pe® s pl/2ei2. Ge(—m,m),p>0.
We leave z'/2 undefined when z is a negative real number. We denote this

function with z'/2, and the corresponding matrix function with A/2.
A2 is well-defined unless A has:

e Real eigenvalues \; < 0, or

1/2

e Non-trivial Jordan blocks at A; = 0 (because f(x) = x'/? is not differen-

tiable at 0).

Condition number / sensitivity
We have already computed the Fréchet derivative of this function in an earlier
example. Let us recall the argument: the Fréchet derivative of g(Y) = Y2 is

L,y(E)=YE+EY, L=I0Y+Y" &I
The Fréchet derivative of f(X) = X'/2 is its inverse,
Ef,X _ (I®X1/2 + (Xl/Z)T ®I)*1.
In particular,
1Zgx | = sep(X™/2, =X /) = sep(f(X), — f(X)).

As we noted earlier, Ly x has eigenvalues with )\1/2711/2, i, =1,...,n.
; ;

A]
This shows that f is necessarily ill-conditioned for matrices that either:
e have a small eigenvalue (taking i = j), or
e have two complex conjugate eigenvalues close to the negative real axis

(because then /\;/2 ~ ai, )\}/2 ~ —ai).
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8.1 The modified Schur method

Let us recall the Schur-Parlett method to compute matrix functions:

1.
2.

4.

Reduce to a triangular U = Q* AQ using a Schur form;

Compute the diagonal of S = f(U);

. Compute the off-diagonal entries of S from SU = US. The resulting

formula involves a denominator w;; — wj;; if this quantity is small or 0,
trouble ensues, and to avoid it we must work blockwise.

Return f(A) = QSQ*.

In the case of A2, we have another option: rather than SU = US, we can
use S? = U to get the off-diagonal entries of S:

8ii8ij T Si,it1Si+1,5 T o0+ 8ijSj5 = Uij. (8.1)

The advantage is that now the denominator s;; + s;;, which is guaranteed to be
nonzero because s;; + s;; € RHP.
The method:

1.
2.
3.

4.

Reduce to a triangular U = Q* AQ using a Schur form;
Compute the diagonal of S = f(U);

Foreach j=1,2,...,nandi=j—1,7—2,...,1, compute the off-diagonal
entry s;; of S by solving the equation (8.1)).

Return f(A) = QSQ*.

Matlab does something similar in sqrtm, but in a divide-and-conquer way: it
splits T into two blocks of the same size, computes S11 = f(T11) and S1o =
f(T22) recursively, and then solves the Sylvester equation S11S512+ 512522 = T2
to obtain the missing block S1s.

Stability of the modified Schur method

In general, not much can be said about the stability of the Schur-Parlett
method; for a generic function one cannot easily obtain backward stability re-
sults. However, in this case we can prove a stability result.

Theorem 8.1. Let U € C™*" be an upper triangular matriz. Then, the matriz
S computed with machine precision u using the Schur-Parlett variant described
above satisfies

S2=U+6y, |6u] <|S|?O(nu).

Here, |M| is componentwise absolute value.
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Combining this bound with a Schur form and converting it into a normwise
bound, we get for a generic matrix A

IX? — Allp < [ X]*O(n’u).

Note that this bound is weaker than backward stability, because in the RHS
we have || X||% instead of ||A||r = || X?|F: and, due to cancellation, the former
may be significantly larger.

Proof. In machine arithmetic, we have
Sij = (Uij © Siiv1 ©8i1,; O+ O 8ij—1 O §j—15) @ (55 B ;).
Using multiple times the relation a ® b = (a * b)(1 + €) and rearranging, we
arrive to
wij — $ii8ij — 8iit18i41,5 — -+ — 8ij 855

< (Juig| + 136l 1355] + [Siaal15ir15] + -+ 154511555]) + OW?).
We can replace 5;; with s;;, as this is a second-order change in u, and use

|uig| = lsiisij + -+ 4 5i5855] < Isuillsijl + - -+ [sij]555]

to get the (7, 7) entry of the sought result. O

8.2 Relation to the sign function and matrix it-
erations

The following result relates the sign function and the matrix square root, show-
ing that we can use one to compute the other and viceversa.

Proposition 8.2. 1. For A € C"*" with no real negative eigenvalues, sign(A) =
A(A%)71/2 where A=1/? s the inverse of AY/2.

2. For A,B € C"*™ such that AB has no real negative eigenvalues, (and
hence neither does BA),

. |0 A 0o C _
&gn{B 0}:[0_1 O]’ C = A(BA)~Y2,

Proof. 1. Tt is enough to prove the corresponding scalar identity, sign(x) =
W, since algebraic identities between scalar functions extend to the
corresponding matrix functions. The quantity 22 has two square roots,
4z and —z; the principal square root is z if x € RHP and —x € LHP,

and from here we conclude easily.

2. Use sign(A4) = A(A?)~'/2, and then use the relation sign(A)? = I to show
that the (2,1) block does indeed contain C' 1.
O
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In particular,
.o A 0 A2
Slgn I 0 = A_1/2 0 .

This relationship suggests using similar iterations to those used for the matrix
sign.

In fact, the first method we start from is another classical method, which
(we will see) can be transformed into a variant of the matrix sign iteration.

Newton method on X2 — A

We can run the Newton method on the map G(X) = X2 — A, G : C"*" —
Cnxn'
Its Jacobian is the Fréchet derivative Lg x[E] = EX + X E, hence we have

Xis1 = Xk — Lglx, [G(Xy)],

ie.,
Xp41 =X, — E, where E solves EX}, + X;,E = X7 — A. (8.2)

On paper, using this iteration is much more expensive than the Schur method:
we must solve a Sylvster equation at each step, and in turn this requires a Schur
factorization. Clearly a method that requires computing one Schur factorization
per step cannot be better than a method that requires only one Schur factor-
ization plus a (cheap) back-substitution step. However, we can find a cheap
closed-form solution to those Sylvester equations.

Lemma 8.3. Suppose the method (8.2) is run with an initial matriz Xo that
commutes with A, for instance Xog = al or Xog = @A, for a > 0. Then,

1. A and X commute;
2. we can take E = (2X),)"1(X? — A) at each step.

Proof. We prove both points at the same time by induction. Point 1 is obvious
for k = 0. Once point 1 is established, (2X},) ™' (X? — A) commutes with A4, and
we can plug it into the Sylvester equation to check that it satisfies it. This not
only proves 2, but shows that E commutes with A and hence also X1 = Xp—F
does. O

After plugging in this formula for F, we obtain the following simpler algo-
rithm.

(Modified) Newton iteration (MN)
1
Xiq1 = §(Xk + X, '4), Xo=al or Xo = aA.
We still have to prove that the Newton method converges to the principal
square root rather than to another solution of X2 = A.
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Theorem 8.4. Assume A has no eigenvalues in R_. Then, the MN and TN
iterations converge to the principal square root AY? for each starting point of
the form Xo = al or Xg = aA, with a > 0.

Proof. We start from MN. Pre-multiply by A~/2, and use commutativity:

A71/2Xk+1 _ % (A’l/ng n (Afl/QXk)71> .

This is the Newton iteration for the matrix sign! Hence A~1/2X,, — sign(A~1/2X,) =
1.

As the two formulas produce the same sequence of matrices X,,, the same
property holds for TN. U

Theory and practice
Problem All of this holds in ezact arithmetic, but the method often doesn’t
work in practice in machine arithmetic!

format short e; % for better error display
rng(0); M = randn(10); M = MxM’;

X = eye(size(M));

Y = eye(size(M));

T = table();
for k = 1:15
X =X - lyap(X, X, M-X"2); % TN
Y = 1/2%(Y + Y\M); % MN
T.TNres (k) = norm(X~2-M)/norm(M);
T.MNres(k) = norm(Y"2-M)/norm(M) ;
T.difference(k) = norm(X-Y)/norm(Y);
T.TNcommute (k) = norm(X*M-M*X)/norm(M)/norm(X) ;
T.MNcommute (k) = norm(Y*M-M*Y)/norm(M)/norm(Y);
end
T

TNres MNres difference TNcommute MNcommute

1.2716e+01 1.2716e+01 0.0000e+00 4.5914e-17 4.5914e-17
2.9472e+00 2.9472e+00 9.4733e-16 2.8536e-16 9.2812e-17
5.5013e-01 5.5013e-01 1.9541e-15 6.8206e-16 4.4933e-16
4.8810e-02 4.8810e-02 3.3700e-15 3.5178e-16 3.1431e-15
5.6788e-04 5.6788e-04 2.4031e-14 9.0480e-17 2.3496e-14
8.0577e-08 8.0577e-08 1.8106e-13 1.0374e-16 1.7888e-13
1.5991e-15 1.4569e-12 1.3761e-12 5.7152e-17 1.3656e-12
8.2069e-17 1.1128e-11 1.0497e-11 8.2657e-17 1.0438e-11
9.9611e-17 8.5061e-11 8.0189e-11 1.1024e-16 7.9815e-11
9.1823e-17 6.5044e-10 6.1301e-10 6.9810e-17 6.1043e-10



8.7288e-17 4.9746e-09 4.6877e-09 8.7521e-17 4.6690e-09
1.0434e-16 3.8049e-08 3.5853e-08 6.9442e-17 3.5713e-08
5.8770e-17 2.9104e-07 2.7423e-07 1.0662e-16 2.7318e-07
8.5101e-17 2.2262e-06 2.0976e-06 6.9301e-17 2.0896e-06
8.5801e-17 1.7029e-05 1.6045e-05 6.1899e-17 1.5984e-05

There is nothing apparently wrong with our matrix M, apart with moderate
ill-conditioning x(M) = 266, but we see that already in this simple example MN
reaches residual 10712 at best, but then starts to diverge. On the other hand,
TN gives good results.

The final two columns TNcommute and MNcommute hint to a possible reason
for this notable discrepancy with the results in exact arithmetic: the matrices
computed by MN no longer commute with A, as they were supposed to.

The geometric picture TN, MN coincide on the manifold of matrices that
commute with A, {X € C"*": AX = XA}, but not on the rest of C**™.
Numerical perturbations take us outside of the manifold, where the two do not
coincide anymore.

Being a Newton method, TN is quadratically convergent. However, MN does
not even have a stable fized point in A*/?: there are starting points arbitrarily
close to A'/? for which the sequence diverges.

To prove this formally, we need to recall a few facts from the theory of
(discrete-time) dynamical systems.

Dynamical systems

Discrete-time, nonlinear dynamical system
Consider the dynamical system induced by a sufficiently regular map F'.

Tt1 = F(:ck), F:C"—C".

Starting from zy = x, + e closed to a fized point x. = F(x.),

vy =F(z,+e)=x,+F, e+ O(llell?),
z =z + (F) ) e+ O(|le]?).

If p(F,,) < 1, there is exponential convergence to x,; we call x, a stable fized
point. If p(F, ) > 1, the iterates (for almost all starting points) diverge away
from z,; we call it an unstable fized point.

Note that in some other contexts this convergence speed is called linear:

i N@e+1 = 2]
k—o0 ka—JC*H

— p(Fy,).

In our case, this Jacobian F), is the Fréchet derivative of the map X}, +— Xj 4.
From standard multivariate Newton results, we have that Lyy 412 =0 =
doubly exponential (“quadratic”) convergence.
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Local stability
We can study the local stability of the map h(X) = (X + X 'A). Its
Fréchet derivative is

Ly x(E) = %(E — X 'EX'A).

Hence Lh’A1/2 = %(E—A_l/QEA1/2), or IAJh,Al/Q = % (I — (A1/2)T ® A_I/Q).
It has eigenvalues % — %)\11 / 2)\;1/ 2, where \; are the eigenvalues of A.

Whenever k(A) is large, p(Ly, 41/2) > 1, hence A2 is an unstable fized point
of h(X).

Denman—Beavers iteration
However, the stability properties are significantly different for slight varia-
tions of the modified Newton’s method.

Set Y3, = A~1 X}, to get the coupled iteration

Denman—Beavers iteration [Denman-Beavers, *76]
1 -1
X1 = §(Xk +Y, ),

1 _
Yit1 = §(Yk + X1,

Remark The same iteration can be obtained by expanding blocks in the

Newton iteration for sign ([94]).

Local stability of the DB iteration

Theorem
The DB iteration satisfies lim(X}, Y;) = (A2, A=1/2), and it is locally stable.

‘We have

2

Using the fact that X,Y, = I, one can verify that the Jacobian is idempotent,
ie., (KDB7(B)B_1))2 = Kpp,(B,p-1)- This shows immediately that it has bounded
powers =—> “weak” stability: the error coming from machine arithmetic stays
bounded (at least in first-order).

E 1[E-Y lFYy—!
LDB,(X,Y)( F ) F_X"1gx-1

Exercise 8.5. Perform a local stability analysis of the Newton method for the
matrix sign. You should be able to conclude that it has the same stability
properties as the DB iteration.

Other variants of the MN method are studied on [Iigham book, Ch. ¢], if you
are interested.
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Chapter 9

Functions of large-scale
matrices

Functions of large-scale matrices

How do we compute f(A) if A is large and sparse? This is a topic of recent
research. We can consider it as an extension of methods to solve large-scale
linear systems, which is the case f(x) = 2~ 1.

Most of the time, one wants f(A)b rather than f(A), because f(A) is full.
Some of the main techniques:

1. Replace f with an approximating polynomial /rational function on a region
U that includes the spectrum of A (how?).

2. Contour integration:

1
27

/Ff(z)(zl — )l ~ Y wn ) T — A)L
k=1

3. Ad-hoc methods, involving e.g. discretization of differential equations: for
instance, exp(A)b = v(1) where 0(t) = Av(t), v(0) = b.

Actually it is not complicated to see that 2. and 3. are special cases of 1., so
ultimately the problem is finding good rational approximations.

9.1 Arnoldi for matrix functions

A different possibility, which contains a way to construct a well-suited approx-
imation function, is using the “Swiss-army knife” algorithm for large matrices:
Arnoldi.

Let us recap Arnoldi (with matrix functions in mind). Let A € C™*™  and
n < m.
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Krylov subspaces

K, (A,b) = span(b, Ab, A%b, ..., A" 1b)
{p(A)b: p polynomial of degree < n}.

The interesting feature of Krylov spaces is that in a problem with a matrix
A and a vector b, such as a linear system, most of the “important stuff” happens
in the subspace K, (A,b), so we can replace the problem with its projection on
the space K,,(A,b), and in many cases the solution of the projected problem
converges quickly to that of the original problem.

Suppose that we have an orthonormal basis V,, of K, (A,b). We can then
define an orthogonal projection matrix P = V,,V;*. The projection of b is Pb =
b = V,e1 8, with § = ||b]|, while the projected version of A is

PAP =V, (V, AV,) Vi,
——

An G(Cn Xn

where A, = V,*AV,. For instance, to solve a linear system Az = b we can
search for © = V,,y that solves the projected problem V,*(Az — b) = 0.

Even if there is no vector b involved, Krylov spaces work remarkably well
also to compute approximations of eigenvalues and eigenvectors: in particular,
for most choices of A and b, one sees that A(A,) approximates well the outer
eigenvalues of A, i.e., those with larger absolute value. A very nice visual ex-
ample is on https://en.wikipedia.org/wiki/Arnoldi_iteration#/media/
File:Arnoldi_Iteration.gif. We will not elaborate on why this is true (also
because it does not hold in all cases), but the general idea is that if (A, v;) are
the eigenpairs of a diagonalizable A, and b is written in the eigenvector basis as

b=wviar + -+ vpan,

then
AFp = vlal/\’f + v\

n’

and the largest components here are those with large |);|, which shows that A*b
lies approximately in the span of the leading eigenvectors.

To use Krylov subspaces efficiently, one must compute an orthogonal basis
V... Moreover, as Krylov spaces are nested one into the other

Kl(A,b) C KQ(A,b) C Kg(A, b) C...

span(b) C span(b, Ab) C span(b, Ab, A%D), ...,

we would like to compute a set of nested orthonormal bases: given an orthonor-
mal basis (v1, va,...,v;) of K;(A,b), can we find one additional vector vj4q so
that (vi,v2,...,v;,vj41) is an orthonormal of K 1(A,b)?

The first idea is computing V; as the @ factor of

qr([b, Ab, ..., AT71p]).
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Unfortunately this idea is doomed to fail, since the columns of this matrix tend
to be aligned with each other and then its condition number becomes very high:
indeed, by the power method, when k grows A*b converges (after a suitable
normalization) to the maximum-modulus eigenvector of A.

Arnoldi iteration
Idea: it is sufficient to take any vector w € K;11(A4,b)\ K;(A,b) and orthog-
onalize it against all the previous vectors, using the Gram-Schmidt process.

w = A*V(:,j); % the continuation vector
for i = 1:j
alpha(i,j) = V(:,1i)’ * w;
w=w - V(:,i) * alpha(i,j);
end
alpha(j+1,j) = norm(w);
V(:,j*+1) = w / alpha(j+1,j);
b
5
Remark: the variant above is called modified Gram-Schmidt (MGS): we
compute coordinates a;; one by one and we subtract the component v;a;; from
w immediately.

Starting point: v; =

Remarks on Arnoldi
This algorithm computes nested bases for the Krylov subspaces:

Kj(A7b):Im[vl vg ... ’Uj], i=1,2...,n.

Important detail At each step, we need to generate a vector in Kj 1(A,b)
that we orthogonalize to all previous vectors. Why did we choose exactly w =
Av; here? Because with this choice we can prove that a;y; ; 7# 0.

Lemma 9.1. Suppose V; has full column rank. Then,
1. v € KJ(A,b) \ Kj,l(A,b)

2. Q41,5 75 0.

Proof. We prove the two statements together by induction on j. We can start
from j = 1, as long as we set Ko(A,b) = {0}, and then the first statement
is obvious. Note that 1. means that the relation v; = p(A)b holds with a
polynomial p of degree ezactly j — 1. Note that this polynomial is uniquely
determined because Vj is full-rank.

Hence, before the for cycle, we have w = Av; = q(A)b with ¢(z) = ap(x) of
degree exactly j, i.e., w € K;;1(A,b)\K;(A,b). The same property holds for the
value of the variable w after the for cycle, since at each step we subtract from
it an element of K;(A,b), i.e., a vector of the form ¢(A)b, where deg(q) < j. O
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Arnoldi: the associated matrix
Gathering all the relations involving the Av; in a matrix, we get

Q11 012 Q13 ... Qi n

Q12 OG22 Q23 ... a2 p

0 Q32 Q33 ... Qa3 n

A[vl vn]:[vl Un+1] 0 0
Vn Va1

an,n

L 0 ce ce 0 On41,n
H

=n

When ay41,, = 0 (breakdown), AV,, = V,,H,,, where H,, is H,, without the last
row. This is an invariant subspace relation.

Note that H,, = V,*AV,, = A,,. The matrix H,, plays a double role here: it
gives the action of A : K; — K41 on the Krylov subspace, and it is a projected
version of A.

Formula for p(A)b
Lemma 9.2. For all polynomials with degp < n,

p(A)b = Vip(An) Vb = Vip(An)erf - (B = [|b])).
Proof. By linearity, it is sufficient to show that A%b = V,, H}V,*b for j < n.

VanLVTT = VnV;AVnV:A o VnV:AVnV;AWzV;b

Let us start from the right. V,,V,* is the orthogonal projection matrix onto
the Krylov space. Since b € K, (A,b), V,,V5b =b.
Now the rightmost part reads V,,V,*Ab; but this equals Ab because Ab €
K, (A,b), and so on.
O

This result suggests an idea: we can take ¢ =V, f(4,)e1[ as an approxima-
tion of f(A), even for an arbitrary f that is not a polynomial.

Arnoldi, matrix functions, and polynomial approximations

Note that
¢ = Vaf(An)er|b]l = Vap(An)er[[bl] = (AP,
where p is the interpolating polynomial to f on A(A,) (not A(A)!)

Known behavior from Arnoldi theory: for many matrices, the eigenvalues of
H,, (Ritz values) approximate the outermost eigenvalues of A.

What is going on: for a diagonalizable A = WAW ™!, we are computing
c=Wp(A)W b instead of f(A)b =W f(\)W ~1b;
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e for eigenvalues “on the outside”, f(\) ~ p(\) because f(u) = p(u) for a
nearby Ritz value p € A(A,).

e for eigenvalues “on the inside”, they may be different, but hopefully | f(\)]
is smaller and does not contribute too much.

A more precise error bound, for Hermitian A

Theorem

Let A be Hermitian, I real interval s.t. A(A) = [Amin, Amax] C I. Let p(z)
be the best-approximation polynomial to f on I, i.e., the one that attains the
minimum of § = max,¢cz|f(z) — p(x)|. Then,

[1f(A)b = ef| < 26][b]].

(And, magically, Arnoldi does all this without knowing p!)

Proof. The eigenvalues of H,, = H} are in I, too: indeed, Hx = uxr = pu =
2*Hx _ "V AV,zx
z*x — z*ViV,zx
written as convex combinations of eigenvalues.
Since the Arnoldi approximation is exact on p,

is a Rayleigh quotient for A, and Rayleigh quotients can be

1F(A)b — el = [|F(A)b = Vo f (Hn) V]|
= (f = p)(A)b = Vo(f — p)(Hn)V, bl
< I = p) (Al + Vo (f = ) (Hu) Vb
< d|[ol| + 4]bll-
O

Hence the Arnoldi approximation is almost optimal: it loses only a factor 2
from the best polynomial approximation || f(A)b — p(A)b|| < 4||b].

To prove a similar bound also for non-normal A, we need a few additional
results. Define the field of values or numerical range

*A
W(A) = {z T.orecn \ {0}} = {set of Rayleigh quotients of A}.

T*r
Clearly A(A) C W(A), but this region is not simple to describe in general.

Exercise 9.3. 1. If A is a normal matrix, show that W(A) = hull(A(A)).
(Idea: start from A diagonal.)

2. If A=1[3}], show that W(A) = B(0,1/2), the disc in the complex plane
with center 0 and radius 1/2.

It can be proved that for a non-normal matrix W(A) is a convex set that
contains hull(A(A)). The following technical result, whose proof is far from easy,
relates matrix functions and numerical range.
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Theorem 9.4 (Crouzeix-Palencia theorem). Let v = 1 + V2. Then, for any
matriz A and any function f that is holomorphic on W(A) we have the inequality

IF (A <~ max |f(z)].

zEW(A)

Crouzeix’s conjecture, which is still an open problem, states that the theorem
still holds with the smaller constant v = 2.

An error bound for non-normal matrices

Theorem
Let A € C™"*™ and let p(x) be the best-approximation polynomial to f in W(A),
i.e., the one that attains the minimum of

5= max |/(2) = p(2).

Then,
[[£(A)b — || < 2v4][bl,

where « is the constant in the Crouzeix-Palencia theorem.

Proof As above, W(H,,) C W(A), so ||(f — p)(H,)|l < 9.

1 (A)D — el = [|f(A)b = Vi f(Hn) V,, 0|
= [I(f = p)(A)b = Vo(f = p)(Hn) V||
< =) (AbI + Vil = p)(H) Vb
< 0][bll +~a]bll-

Arnoldi variants [Giittel *13]
What if f takes its larger values at some internal point of the spectrum of
A eg., f(z)= % and A has eigenvalues “around” 07

Idea: we can use variants of Arnoldi to compute bases for other spaces.

e Extended Krylov space: it is the space of Laurent polynomials

Knlﬂz (A7 b) = Aian’m-i—'sz (A’ b) = Knl +n2 (Aa Ainl b)

= {p(A)b p= afnlw_nl + Offnhle_nH_1 +- 4+ anzflxnz_l}

e Rational Krylov space: it is the space of rational functions with fixed
denominator ¢(z) of degree < n,

Kqn(A,b) = q(A) 7 Kn(A,0) = Kn (A, q(A)7'D)
= {r(A)b: r(z) = p(2)/q(z), p any polynomial of degree < n}

One can compute bases for these spaces with a similar strategy.
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Extended Arnoldi
Idea: to expand an extended Arnoldi space adding a negative power of A,
take a suitable continuation vector

V= (g AT 4 b, 1A € Ky 0y (ALD)
and multiply it by A~! to obtain
w=A"1v=(a_p, A" b g, 1 AT € Ky 10, (A, b).

We can now orthogonalize w with respect to the other vectors of the basis. We
should ensure that the continuation vector has a_,, # 0 to avoid breakdown.

Similarly, to expand it adding a positive power of A, multiply by A as usual:
w = Av.

A working choice: at each step take v = vy, where k is the last iteration in
which you expanded the space from the same side.

Rational Arnoldi

A similar idea works for rational Arnoldi. Let us start from a generic vector v
in the rational Arnoldi space K ;(A,b), with ¢(z) = (2—&1)(z—&2) ... (2—&;-1),
ie.,

v=q(A)" p(A)b

for some p with deg(p) < j. Then, for a given §; € C we can compute
w=(A=&) € Ky (a—g,),5+1 (4, D).

We need to choose a vector v with z — &; { p(z) to avoid breakdown. We won'’t
go into details on how this is done.

One can also include steps of traditional Arnoldi, i.e., take w = Av at certain
iterations. This has the effect of raising by 1 the allowed degree of the numerator
Jj, while not raising the degree of the denominator ¢(z); it can be interpreted as
adding a “pole at infinity”, projectively.

Putting together all orthogonalization relations yields an equality of the form

AVn—&-lKn = n+1ﬁn .

Again, we can obtain an expression for A4, = V,*AV,, from K, and H,,; we will
not go into details on its exact form.

For these two variants, many of the results that we have proved for Arnoldi
continue to hold. In particular, we can consider the approximation

FAD ~ Vo f(A)VED = Vi f(An)erB, A = VAV, (9.1)

Analogous versions of the approximation results that we have proved for
Arnoldi hold for these variants, for instance the following.
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Lemma 9.5. Let V,, be the basis matriz produced by extended (resp. rational)
Arnoldi, which we suppose to have full rank. If f is a Laurent polynomial with
terms of degrees —ny to ng — 1 (resp. a rational function with denominator
q(2)), then

FAbL=V,f(An)eiB.

Proofs: use Ky, n,(A4,b) = Ky 40y (A, A7™"b) or Ky = K, (A4, q(4)71b) to
reduce to the previous case.

Costs and benefits
Computational cost:

o FExtended Arnoldi: one needs to solve several linear systems with A~!, one
for every negative power of x in the approximation space. These can be
computed with a single (sparse) LU factorization of A.

e Rational Arnoldi: one needs to solve several linear systems with (A —
&I)~ Y, so we need one mew sparse LU is needed for each new pole.

Both variants are significantly more expensive than Arnoldi, but they compen-
sate by having additional degrees of freedom in the choice of the poles.

Key issue: how much more effective is rational interpolation (for your f and
A) than polynomial interpolation, so that the trade-off is convenient? How to
choose good poles &;?

There are many classical and current research results on these aspects. No
details here; I am not an expert myself!

More detail in the review paper [Giittel "13].

Matlab examples

rng(0); n = 10; A = randn(n,n); b = randn(n,1);

k = 3; % rational Arnoldi with poles 1, 2, \infty

K = zeros(k+1,k); H = zeros(k+1,k); V = zeros(n, k+1);
beta = norm(b); V(:,1) = b / beta;

lambdal = 1; 7, step 1

w = (A - lambdal*eye(n)) \ V(:,1);

alphall = V(:,1)’*w; w = w - V(:,1)*alphall;

alpha21 = norm(w); V(:,2) = w / alpha2il;

K(1:2,1) = [alphall; alpha21];

H(1:2,1) = [1+alphallixlambdal; alpha2l*lambdail];
lambda2 = 2; 7, step 2

w = (A-lambda2*eye(n)) \ V(:,1);

alphal2 = V(:,1)’ * w; w = w - V(:,1) * alphal2;
alpha22 = V(:,2)’ * w; w =w - V(:,2) * alpha22;
alpha32 = norm(w); V(:,3) = w / alpha32;

K(1:3,2) = [alphal2; alpha22; alpha32];

H(1:3,2) = [1+alphal2xlambda2; alpha22*lambda2; alpha32*lambda?2];
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Matlab examples
% lambda3 = inf % step 3

wo= AxV(:,1);
alphal3 = V(:,1)’*w; w = w - V(:,1)*alphal3;

alpha23 = V(:,2)’*w; w = w - V(:,2)*alpha23;
alpha33 = V(:,3)’*w; w = w - V(:,3)*alpha33;
alpha43 = norm(w); V(:,4) = w / alpha43;

K(:,3) = [1;0;0;0];

H(:,3) = [alphal3; alpha23; alpha33; alphad3];

norm (A*xV*M-V*N) / norm(N) %accuracy check

%formula for the projected matrix when lambda(end)=inf
An = H(1:end-1,:) / K(1:end-1,:);
norm(V(:,1:end-1)’*A*V(:,1:end-1) - An) / norm(An)

Usually one takes the last pole &, to be co (a traditional Arnoldi step), so
the last row of K, is 0 and A,, = H, K, .

Matlab examples
Using Rktoolbox by S. Giittel http://guettel.com/rktoolbox/\

>> rng(0); A = randn(100) + 10*eye(100);

>> v = eig(A); plot(real(v), imag(v), ’x’);

>> b = randn(size(A,1), 1);

>> poles = [-20:-1, inf]; 7 inf as last pole

>> [V, K, H] = rat_krylov(A, b, poles);

>> An = H(l:end-1,:) / K(1:end-1,:);

>> v = eig(A); w = eig(An);

>> plot(real(v), imag(v), ’x’, real(w), imag(w), ’0’);
>> ¢ = V(:, 1:end-1)*expm(An) * V(:, 1:end-1)’*b;

>> norm(expm(A)*b - c) / norm(c)

Try again with poles = [21:40, inf], or inf*ones(1,21) (classical Arnoldi),
[0O*ones(1,10), inf*ones(1,10)] (extended Arnoldi), ...

The choice of poles directs which eigenvalues are best approximated and
influences performance greatly.
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Chapter 10

Lyapunov equations

Given A,Q € C™*" with Q = @* = 0, the Lyapunov equation is the matrix
equation

AWA+WA+Q=0 (10.1)

in the unknown W € C™"*"™.

It is a special case of the Sylvester equation: so we already know that there
is a unique solution if and only if A(4) UA(—A*) = 0.

Important case: when A(A) C LHP (open left half-plane).

Lemma 10.1. Suppose has a unique solution W ; then W is Hermitian.

Proof. Transpose everything; W* is another solution. O

Lyapunov equation: positivity

Lemma 10.2. Suppose A(A) C LHP (open). Then, Q = 0 implies W = 0,
and @ > 0 implies W = 0.

Proof. We prove the result by giving the following closed formula for the solu-
tion: .
W = eA*thAt dt.
0

Note that the integral converges: since A(A) C LHP, p(exp(A4)) < 1, and hence
et decreases exponentially.

To prove this formula, compute &e? 'Qe?t = A*eA™tQeAt 4 eA Qe A,
then integrate both sides. O

Lemma
Suppose @ > 0 and W > 0. Then, A(A) C LHP.

Proof Let Av = \v; then 0 < v*Qu = ...

Remark We cannot replace the > symbols in this lemma with >: Q, W = 0
do not imply A(A) C LHP. This is easy to see by considering an extreme case:
obviously from 0+ A+ A -0 = 0 we cannot deduce anything on A!
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Relation to linear dynamical systems

Continuous-time linear dynamical system
z(t) = Az(t), z:[0,00] = C"
x(0) = xo.

We know that the solution to this ODE is x(t) = exp(At)zo. This system is
asymptotically stable, i.e.,

tli}m x(t) =0 for all choices of zyp € C",

iff N(A) C LHP.

In view of the lemmas above, it is sufficient to exhibit W > 0 such that
A*W + WA < 0 to prove that A has all its eigenvalues in the LHP.

At the time of Lyapunov (1857-1918), doing this (together with factoriza-
tions to show that W, @ > 0) was often easier than computing the full spectrum
A(A) (without a computer!).

Remark The matrix W that solves is an energy function for the system:
if V(z) = 2*Wx, then £V (x(t)) < 0 (direct verification).

Discrete-time version
These results (and many of the following ones) also come in a discrete-time
variant.

Discrete-time linear dynamical system

xo € C™
SU]H_l:Al‘k, k:(),].,?,...
The system is asymptotically stable, i.e., limg_, o, x, = 0 for each xg, iff A
has its eigenvalues in the open unit disc D.
Stein’s equation
W-AWA=Q, Q>0 (S)
If W = 0 solves (S), then V(z) = 2*Wa is an energy function, i.e., V(zp41) <

Lemma
A(A) C D iff (S) holds with W, Q > 0.

Proof Analogous to the continuous-time one. Closed formula:

w i(A*)kQA’“.

k=0

Proof Vectorizing, (S) becomes (I — AT @ A*)vec(W) = vec(Q). Then use the
Neumann series (I — M) ' =T+ M+ M? +....
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Remark (S) can be solved with a Bartels-Stewart-like method.

Remark More generally, Bartels-Stewart-type methods can be obtained for
all equations of the form AXB + CXD = E, using QZ factorizations of (A, C)
and (DT, BT).
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Chapter 11

Introduction to control
theory

11.1 Examples of control systems

Control theory [Datta, Ch. 5] is the study of dynamical systems with controllers;
it is an important topic in engineering.

FEzample can we keep an ‘inverted pendulum’ of length 1 in the unstable
upright position (12 o’ clock) by applying a steering force?

We suppose that the pendulum is a massless stiff bar of length 1 with with
weight at the end, so that there is only one degree of freedom, the angle 6 that
the bar makes with the vertical (12 o’ clock «» 6 = 0).

The equation of motion is § = gsinf ~ gf. We can rewrite it in terms of

6
the state x(t) = [} , to obtain the matrix version

0
7= 9 | T2 0 1 z
0] lgm] g O]
. 0 1 . . .
The system is not stable: A = {g O} has one positive and one negative eigen-

value.

Example: controlling an inverted pendulum )
Now we apply an additional steering force u (control): we have 6 = g0 + u,
or in matrix form

it =Ax+ Bu, B= {(1)]

Can we choose u(t) so that the system is stable? Yes: we can even choose one
of the form u(t) = Fx(t), F € R**?
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We can literally build a contraption (engine + camera) that sets the appro-
priate force according to the current state only (feedback control). u = [ f fg] T
gives the closed-loop system

i=(A+ BF)z = [fl‘jrg J}z] -

Choosing f1, fa, we can move the eigenvalues of A + BF' arbitrarily.

Remark: A (linear) ‘controller’ that observes only the position and not the
velocity corresponds to fo = 0. It is easy to see that this is not enough to
stabilize the system: if fo = 0, there is no choice of f; for which A(A+ BF') C
LHP.

Example: heating a long corridor with a window
Heat equation: in a bar of uniform material (the segment [0, 1]), one endpoint
1 is kept at constant temperature 0°C, and we apply a variable temperature
(amount of ‘heat’) u(t) at the other endpoint 0.
The temperature x(y,t) at position y and time ¢ follows
0 0?

§x(y,t) = aa—ny(yﬂf), x(0,t) = u(t), (1,t) = 0.

We discretize in space: z(t) is a vector of temperatures at equi-spaced points
h,2h,...,(n —1)h (those at 0 and (n + 1)h = 1 are prescribed).

4
dt
A = ah?tridiag(1, —2,1), B = ah?e;.

(t) = Az(t) + Bu(t),

Other examples in [Datta, Ch. 5], e.g. electrical circuits.

Another impressive example of a control system is the triple pendulum on a
cart; see e.g. the video youtu.be/cyN-CRNrb3E. This is a system with 3 degrees
of freedom.

11.2 Controllability
&= Az+ Bu, AeC™" BeC™m.

Q1 Can we stabilize the system around 0, i.e., choose u(t) = Fxz(t) so that
the system is asymptotically stable?

Q2 Can we control the system, i.e., choose u(t) to reach a given value of x(tr)?

Not always: counterexample:

Air A | B
][5 "

(s


youtu.be/cyN-CRNrb3E

No matter what u(t) we choose, we cannot change the dynamics of the second
block z5(t). If Agg has eigenvalues outside the LHP, the system will always be
unstable.

We shall see that this is essentially the only case when a system is not
controllable, but this structure may be hidden behind a change of basis for the
state A < MAM~', B + MB, so it might be more difficult to identify. The
key to analyze it is invariant subspaces: in the situation 7 the columns
of By belong to a nontrivial invariant subspace Im[]] of A. The concept of
invariant subspaces does not depend on the basis.

Hence, to identify a structure like we can construct the smallest in-
variant subspace for A that contains the columns of B. We can give a formula
for this subspace.

Lemma 11.1. Let A € C"*™ B € C"*™., The smallest A-invariant subspace
that contains the columns of B is

K(A,B) :=1Im[B, AB, A’B, .. .].

Proof. Tt is simple to check that K (A, B) is in fact invariant, and that every
invariant subspace must contains the columns of B, AB, A%B, .. .. O

Note the connection with Krylov subspaces: if B is a single vector, this is
the union of all Krylov subspaces K,, (A, B).

(In fact, this K does not stand for Krylov but for Kalman, another key figure
in control theory.)

Definition 11.2. The space K(A,B) is called the controllability space of
(A,B). A matrix pair (A,B) € C"*™ x C"*™ is called controllable when
K(A,B)=C"

Properties

e Controllability depends only on Im B, hence (A, B) controllable <=
(A, BK) controllable, for any invertible K.

e Similarly, (A4, B) controllable <= (A, BR™!B*) controllable for any
invertible R € C™*"; we will use this property in future.

e (A, B) controllable <= (A — al, B) controllable, since the powers of
A — ol are linear combinations of the powers of A.

COI’ItI‘Ollability [Datta, Ch. 6, with more streamlined proofs]
We shall show that indeed the controllability space reveals the structure we
were interested in.
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Lemma 11.3 (Kalman decomposition). For each pair (A, B), there exists a
nonsingular M € C"*™ such that the following block decomposition holds, and
(Ay1, By) is controllable.

A A B
-1 _ A 12 —1p_ |P1
M AM_[O AQJ, M B_[O]

The blocks must be of the same size, i.e., By € C™"1*™ jf A;; € CMxm,
Moreover, n; = dim K (A, B), and in particular we have ny = n if and only
if (A, B) is controllable.

Proof. Tt is sufficient to take M = [ M, M. ] such that M; is a basis of K (A, B);
then, the blocks By and Ag; must be zero, because K (A, B) contains the columns
of B and is A-invariant.

If (A11, B1) were not controllable, then K (A1, B11) (extended with zeros)
would be a smaller invariant subspace of M ~'AM that contains the columns of
M~!B, contradicting minimality. O

We now need to prove that this concept that we dubbed controllability of
a matrix pair is indeed related to the controllability of the dynamical system
i = Ax + Bu.

Theorem 11.4. The following are equivalent.

1. The system & = Az + Bu, x(0) = zq is controllable, i.e., given any target
state xp and time tp we can choose a control function u(t) such that
x(tp) = XF.

2. The pair (A, B) is controllable.
3. The matrixz .
Wy :/ exp(AT)BB* exp(A*T)dr
0
is invertible (for a specific t > 0, or, equivalently, for all of them,).

Before starting the proof, we remark that the expression of W; resembles the
integral formula for the solution of the Lyapunov equation that we have proved
earlier. Indeed, we see that W = lim;_, o W;. In particular, this equivalence
shows that W = 0 if and only if (A, B) is controllable.

Proof. 1 = 2 Suppose, by contradiction, that K (A, B) is not the whole space.
Recall the ugly closed formula for the solution of a linear differential equation
&(t) = Ax(t) + f(t), where in our case f(t) = Bu(t). We have

z(t) = exp(At)xo + /0 exp(A(t — 7)) Bu(t)dt. (11.2)
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Since exp(A(t — 7)) is a matrix function and hence a polynomial in A, one sees
that the integral always takes values in K (A, B). Hence, independently of u(¢),
we cannot obtain all possible values of x(t); it is sufficient to take xr such that

xp — exp(Atp)xo & K(A, B)

to get a vector that cannot be reached.

2 = 3 Suppose Wyv = 0 for a certain ¢ > 0. Then, 0 = v*Wyv =
f(f||v* exp(AT)B||?dt. This must mean that the (continuous) function ¢(7) =
v* exp(AT)B = 0. Hence, in particular.

and this shows that v*[B, AB, A?B,...] = 0, so the controllable space is not
the whole C". 3 = 1 Take a control u(t) of the form

u(t) = B* exp(A*(tp — 1))y,
with y € C"™. Plugging it into (11.2)), and recognizing the matrix W; inside the
expression (up to a change of variables 7 = tp — t), we obtain

x(tp) = exp(Atrp)zo + Wi, y.

Since Wy, is invertible, with a suitable choice of y we can obtain any value of
x(tp) € C™. O

Other controllability criteria

Popov (or Hautus) criterion
(A, B) controllable <= rank[A — AI, B] =n for all A € A(A) <= rank[A —
A, B] =n for all A € C.

It is sufficient to test the condition on A € A(A), because for all other As we
already have rank(A — A\I) = n.

Proof

< We can assume (up to a change of basis) that (4, B) is in a Kalman
decomposition, with a non-trivial block As. Take a left eigenpair v* Az = Av™*:
then, [0, v*][A — AI, B] = 0.

= If v*[A — A\, B] = 0 for some A € A(A), then we get 0 =v*B =v*AB =
v*A?B = ..., and hence K (A, B) # C" as in the proof of the previous theorem.
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How to test controllability numerically?
Numerically, almost any (A, B) is controllable: things are rarely zero. Any-
way, various options:

e Compute rank[B, AB, A?B,..., A" 1B]. We can stop at n — 1, because
A"™ is a linear combination of I, A, A%,..., A"~! by the Cayley-Hamilton
theorem.

e If B is a single vector, you can also run a Krylov algorithm until the final
iteration, and check for breakdown.

e Compute A(A) and check that rank[A — zI, B] = n for each z € A(A).

e Assume (up to replacing it with A — al) that A(A) C LHP. Solve the
Lyapunov equation AW + W A* + BB* = 0 and check if W > 0.

All these methods rely on a rank decision: are certain computed values
positive?

Remark There are methods to compute the distance of a certain matrix pair
(A, B) to the nearest uncontrollable pair, exactly like the condition number of
a matrix M is a measure of the distance of M to the nearest singular matrix.
They are somewhat more complex, and research is still active on the best one.

Remark The criterion with the Lyapunov equation actually corresponds to a
physical quantity: zjW ~lzg is the minimal amount of energy f(fF u(T)*u(r)dr
that we need to reach z(trp) = 0 starting from 2(0) = 9. We won’t prove it
here. Hence, the closer to uncontrollable a system is, the more energy you need
to put in to actually control it.

(Matlab examples: construct a non-controllable (A, B) from a Kalman de-
composition, and apply the various methods.)

11.3 Stabilizability

If a system is controllable, then it is also stabilizable: we can find F' such that
A(A+ BF) C LHP. The following result gives us a practical way to compute
one such choice of F'.

Theorem (Bass algorithm)
Let (A, B) be controllable, a > p(A), and W the solution of

(—A—al)W+W(—A—al)*+2BB* = 0. (L)

Then, W = 0 and F = —B*W ! is a stabilizing feedback.

Note that (—A — «al, B) is controllable because (A, B) is so, that A(—A —
al) C LHP, and that @ := 2BB* > 0. By Lyapunov eq. results, this implies
W >~ 0. Rearranging gives

(A+ BF)W + W (A + BF)* 4+ 2aW = 0.
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By Lyapunov eq. results, W > 0, @ := 2aW > 0 implies A(A+ BF') C LHP.

Remark We can actually find F' such that A+ BF has any chosen spectrum.
(We won’t prove it here.) [Datta, Ch. 11]

Stabilizability
Sometimes, even if a system is not controllable, we can still ensure that the
solution converges to 0. Example: take a system already in Kalman decompo-

sition N A 0
_An 12 | B |z (t
S G B A R ]
with A(Age) C LHP. Then, the control does not act on z2(t), but x3(t) — 0

already by itself!

To stabilize this system with a feedback control, just take F = [F} 0], where
Fy is chosen so that A(A;; + B1Fy) C LHP (it exists because (Aj, By) is
controllable by definition of Kalman decomposition).
Stabilizability conditions

Theorem
The following conditions are equivalent; if they hold, (A, B) is called stabilizable.

1. A(A22) C LHP in the Kalman decomposition;

2. tk[A—al,B]=nfor all « ¢ LHP;

3. We can find wu(t) such that lims_, o 2(t) = 0;

4. We can find F such that A(A+ BF) C LHP (hence we can take u(t) =
Fxz(t) to satisfy the previous point).

We won’t see a full proof, but it mostly follows from things we have already
stated.
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Matlab example: inverted pendulum

% (dubious example because the true sys is nonlinear)
A=1[01; 10]; B=1[0;1]; x0 = [0.1; -0.05];

% open-loop system
[t, x] = ode45(@(t,x) A*x, [0,5], x0);
plot(t,x);

% feedback that observes the position and tries to push it back
F = [-1.5 0];

[t, x] = ode45(@(t,x) (A+B*¥F)*x, [0,5], x0);

plot(t,x);

% random feedback (try several)

F = randn(1,2);

[t, x] = ode45(@(t,x) (A+B*¥F)*x, [0,5], x0);
plot(t,x);

Matlab example: heat equation

% heat equation on a steel bar
n = 10; y = linspace(h,n*h,n);

h=1/(n+1); x0 = rand(n, 1);

A = h~2%(-2*eye(n) + diag(ones(n-1,1),1)
+ diag(ones(n-1,1),-1));

B = h™2%eye(n,1);

% open-loop system
[t, x] = ode45(@(t,x) A*x, [0,1000], x0);
surf(y, t, x);

% constant stream of heating
[t, x] = ode45(@(t,x) A*x + Bx1, [0,1000], xO0);
surf(y, t, x);

% feedback

F = rand(1,n);

[t, x] = ode45(@(t,x) A*xx + BxFxx, [0,1000], x0);
surf(y, t, x);

% thermal sensor midway along the bar

F = zeros(1,n); F(end/2) = -1000%h"2;

[t, x] = ode45(@(t,x) A*xx + BxFxx, [0,1000], x0);
surf(y, t, x);
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% thermal sensor with wrong sign

F = zeros(1,n); F(end/2) = 1000*%h"2;

[t, x] = ode45(@(t,x) A*x + BxF*xx, [0,1000], x0);
surf(y, t, x);

% controlling to a specified position
tf = 1000; xf = rand(n,1);

Winf = lyap(A, B*B’);

W = integral(@(t) expm(Ax*(tf-t))*B*B’*expm(A’*(tf-t)),
0, tf, ’ArrayValued’, true);

eig(Winf), eig(W) % system barely controllable

y =W \ (xf - expm(A*tf)=*x0);

[t, x] = oded45(@(t,x) Axx + B*B’*expm(A’*(tf-t))x*y,
[0,1000], x0);

surf(y, t, x); % hard-to-control system

[x(end,:); xf’] % not too accurate!

[t, x] = oded45(@(t,x) Axx + B*B’*expm(A’*(tf-t))x*y,
[0,1000], xO, odeset(’RelTol’, 1le-8, ’AbsTol’, 1e-10));
[x(end,:); x£’] % but it was just an ode4b5 accuracy issue

% Bass’s algorithm

alpha = 1.1*max(abs(eig(A)))

W = lyap(-A-alpha*eye(n), 2*B*B’)
F = -B’/W; eig(A+B*F) %all in LHP!

[t, x] = oded45(@(t,x) A*x + BxFxx, [0,1000], xO0);
surf(y, t, x);
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Chapter 12

Optimal control

Optimal control
Several choices available for stabilizing feedback F: for instance, you can
choose different «’s in Bass algorithm.

Is there an ‘optimal’ one? One possible way to formalize this: the control
that uses the minimum energy, defined by a quadratic form (R = 0, @ = 0).

Linear-quadratic optimal control
Find u : [0,00) — C™ (piecewise CY, let’s say) that minimizes
Viu) = / z*Qx + u*Rudt
0
s.t. & = Ax + Bu, x(0) = x, tlim x(t) = 0.
— 00

We assume here that R >~ 0: control is never free. Optimal control becomes
a trickier problem otherwise.

Linear-quadratic regulator theorem [Datta, Thm 10.5.1]
A solution follows from calculus of variations principles; here is a self-contained
version.

Theorem
Let Q = 0, R = 0, (A, B) controllable. Set G = BR™'B* = 0.
There exists a unique X = X* € C™*™ such that

L A X +XA+Q - XGX =0,
2. A(A—GX)cC LHP.

The optimal value of the minimum problem

min /000 x(t)*Qz(t) + u(t)" Ru(t) dt,
s.t. &(t) = Az(t) + Bu(t), lim z(t) =0

t—o0
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is 5 Xxo, attained with the feedback control u(t) = Fz(t) obtained with
F=-R'B*X.

Note that indeed A+ BF = A — GX is stable by the conditions we imposed
on X. The equation
A X+ XA+Q-XGX =0

is called continuous-time algebraic Riccati equation, and X that satisfies 1-2 is
called its stabilizing solution.

Proof. Proving the existence of X with those properties will be long, and it is
the topic of the rest of this chapter. We shall now conclude assuming it exists.

Note that A(A — GX) C LHP implies lim;_, o x(t) = 0, so this u is admis-
sible. Take a generic stabilizing control u, and compute

%x*Xx =" Xz + 2" X%
= (Az + Bu)* Xz + 2" X (Ax 4+ Bu)
=" (A" X + XA)z + v B* Xz + z* X Bu
=2"(XBR'B*X — Q)z + u*B*Xx + 2* X Bu
=(u+ R 'B*X2)*R(u+ R™'B*Xx) —2*Qx — u* Ru.

>0

Integrating from 0 to oo,

(o)
/ 2" Qr 4+ v Rudt > i Xxy — x(00)* X (00),
0 N———
=0

with equality if u + R~'B* Xz = 0. O

Riccati equation and subspaces
The equation

AX+XA+Q-XGX =0, Q+0,G*=0

is called algebraic Riccati equation (ARE). It is an invariant subspace problem
in disguise, because if X satisfies the equation then

o o 5] - k] a-en.

Hence the problem of finding X can be recast as finding a suitable invariant
subspace of H. The road to proving the existence of our solution X passes
through studying the properties of the matrix H.
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Hamiltonian matrices
A matrix of the form

A _G * *
H|:_Q _A*:|7 Q=Q",G=G

is called Hamiltonian matrix.

Lemma 12.1. Let H be Hamiltonian, and A € A(H). Then, —\ € A(H), too,
and the two have the same multiplicity.

It is easy to see that —\ is the symmetric of A\ with respect to the imaginary
axis.

Proof. Let J = [_ I} One can verify directly the equality J 'HJ = —H*.

1
Hence, H and —H* are similar, and they have the same spectrum (also counted
with multiplicities). O

We can say more.

Theorem 12.2. Assume Q = 0, G = BR™'B* = 0, (A, B) (or, equivalently,
(A, G)) stabilizable, and (A*,Q) stabilizable. Then, H has no eigenvalues with
ReA =0.

zZ1

Proof. Suppose instead H[Zl] = w(ZL]. Writing the blocks out explicitly, we
get

Az — Gzg = wzy,
—Qz1 — A 29 = wzs.

We can eliminate A — 1w from these equations: multiply the first equation by
25, transpose the second, and multiply it by z;. Then we are left with

21Qz + 25Gzy = 0.

Since @) and G are positive semidefinite, it must be the case that Qz; = Gz, = 0.
Substituting it above, we get (A —wwl)z; =0, (A —w)*z2 = 0. We then obtain
2Zi[A"+w Q]=0, z)[A—w G]=0.

Since at least one of z; and 2y is nonzero, we contradict one of the two stabiliz-

ability conditions (Popov test). O

Hence, H has n eigenvalues in the LHP and n in the RHP, counted with
multiplicity. In particular, it has a (unique) n-dimensional invariant subspace

Ul 2nxn
Ug] eC such

A -G U1 o Ul
4 S| [U]s. acme
We call this invariant subspace the stable invariant subspace. We can prove a
particular property.

associated to its eigenvalues in the LHP, i.e., there is U = {
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Lemma 12.3. Let ‘H be Hamiltonian, and [gl} be a basis matriz for its stable
2

imvariant subspace. Then,

un)* U . .
[Uj J {Uj =U3U, —U;Uy = 0.
Proof. Consider a Jordan basis for H, partitioned into a set of Jordan chains in
the LHP and one in the RHP.

Jrap 0 —1
H=V V= 12.2
[ 0 JRHP} (12.2)

Note that the first n columns of V' are a basis for the stable invariant subspace
of H. By transposing and negating , one sees that the last n rows of V1
are a basis for the stable invariant subspace of —H*. In particular, these two
subspaces must be orthogonal, because V=1V = I.

We know that U is a basis for the stable invariant subspace of H, and, thanks
to the relation J~'HJ = —H*, we see that JU is a basis for the stable invariant
subspace of H*. Hence, in particular, U and JU are orthogonal. O

A subspace such that U and JU is orthogonal is called Lagrangian subspace.

Existence of X
We are now very close to proving the existence of X. If we can prove that
U, is invertible, then we can take a different basis

for that invariant subspace, and get (with X = UpU; ')

[AQ _5*] [)I(] = LI(] S, S=u,surt. (12.3)
Expanding out the blocks we get
—Q-A*X = X8 = X(A-GX),

which is the Riccati equation, and A(A — GX) = A(§) C LHP.
Theorem 12.4. Suppose (A, B) and (A*, Q) stabilizable, Q = 0, G = 0. Then,
U, s invertible.

Proof. The key is proving that ker U; is an invariant subspace for S. Let v €
ker Ul,

UQ'U U2

—_————
=0

U3 GU = [vUs O]H{ 0 ] — vt U U] [Ul} Sv=0
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implies GUsv = 0. Then looking at the first block row of

A =G| |U; Yy — Uy Sv
—-Q —A*| |Uy| " |Us
we get U1 Sv = 0 as needed.
If ker U; is nontrivial, we can find v, A € LH P such that U;jv = 0, Rv = \v.

Now the second block row gives —A*Usv = AUsv. This (together with GUzv = 0
from above) contradicts stabilizability. O

Symmetry of the solution
X~ X =U;"Us — LU = U (U3U, — U U)UT = 0.

Positive definiteness of the solution
Note that

ARE <—= (A-GX)'X+XA-GX)+Q+ XGX =0.
So X solves the Lyapunov equation
AX+XA+Q=0, A=A-GX,Q=Q+ XGX.

And we know that A(A) ¢ LHP,Q = 0 = X = 0.

Under slightly stronger assumptions one can also show that (A*, Q) control-
lable — X > 0.

Factorization
Once we know X exists, we can write the factorization
I 0 2y I 0] [A-GX -G
-X I X I 0 —(A-GX)*|”

which displays clearly the eigenvalue pairing X, —\.

How to solve Riccati equations

e Newton’s method (historically the first option).

e Invariant subspace computation: via unstructured methods (QR), ‘semi-
structured’ methods (Laub trick), or fully structured methods (URV).

e Sign iteration (and variants).
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Chapter 13

Newton’s method for AREs

Newton’s method for CARE
Each iterate of Newton’s method is a Lyapunov e)quation:

F(X)=A'X+XA+Q—-XGX
Lpx(H)=A"H+HA—-HGX — XGH =H(A-GX)+ (A—-GX)*H.
Lrx=A-GX)" @I+ (A-GX)".

If X, is the stabilizing solution then A(A — GX.) C LHP = Lpx, is
nonsingular.

Newton’s method
For £k =0,1,2,...

1. Solve H(A — GX}) + (A— GXy)*H = F(Xy) for H;

2. Set Xp41 =X, — H.

Newton’s method
Note that H(A — GXy) + (A — GX)*H = F(X},) is equivalent to

Xk+1(A — GXk) + (A - GXk)*XkJrl =—-Q — X;GX; <0.

If A(A—GXy) C LHP, then Xy41 *= 0, by the results on Lyapunov equations.
Actually, something stronger holds.

Theorem
Suppose X is chosen such that A(A — GXy) C LHP. Then, X; = X5 = X5 =
-+ = X4 = 0. Moreover, X — X, quadratically.

Remark The thesis does not include Xy > X;: anything could happen in
the first iteration!
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Monotonicity of Newton’s method
Proof (sketch) Coupled induction. Set Ay := A — GX}. Some algebra gives

(Xt — Xe1)Ar + A5 (X — Xip1) = — (X — Xio—1)G( X — Xi—1)
(X = Xpp1) A + AL (X — Xpy1) = — (X — Xp)G(Xo — Xy)

hence Ay stable = Xj = X411 = X..
(Xk+1 = Xi) A1 + Ay (X1 — Xo)
= —(Xpt1 — Xip)G(Xppt1 — Xip) — (X1 — Xo)G( X1 — Xo)

This does not prove immediately that A;q is stable (because the RHS is not
=< 0), but plugging in Agx41v = Ao with Re A > 0 we get B(Xj11 — Xi)v =0,
hence also Axv = M.

Matlab experiments

Newton: wrap-up
Algorithm
e Use Bass’s algorithm to find Xy such that A — GX| is stable

e Run Newton iterations until convergence.

Expensive: each iteration requires a Schur form.

Convergence: standard quadratic convergence of Newton’s method holds:
if the solution is simple (which is the case whenever the Hamiltonian has no
imaginary eigenvalues <= Lp x is invertible), then || X, — Xpi1|| ~ || Xs —
X%

Defect correction / iterative refinement: One final step of Newton can be
used to improve the accuracy of a computed solution from another algorithm.
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Chapter 14

Invariant subspace methods

for CAREs

Invariant subspace methods for CAREs
X solves CARE A*X + XA+ Q = XGX iff

A -G||I I
4 S]f- e vea-on
One can find X through an invariant subspace of the Hamiltonian.

>> [A,G,Q] = carex(4) %if test suite is installed
>> n = length(A);

> H=[A-G; -Q -A’];

>> [U, T] = schur(H);

>> [U, T] =ordschur(U, T, ’lhp’);

>> X = U(n+1:2*%n, 1:n) / U(1:n, 1:n);

Recall: backward stability
QR-like algorithms based on successive orthogonal transformations are back-

ward stable: at each step instead of H;,4+1 = Q;HQ; one computes H; =
Q:HQ; + F;, with forward error ||F;||/||H;] = O(u). This is mapped back
to a backward error AH(® = QiQ5 ... QFF;Q; ... Q2@ with the same norm.
In particular, the Schur method computes a true invariant subspace of H +
AH, with [|AH| small.
However, this method is not structured backward stable: the error AH is

not Hamiltonian.

Among the consequences, eigenvalues close to the imaginary axis can be
‘mixed up’. Try carex(14) for instance: the Schur method produces an in-
variant subspace U that does not give a symmetric X, because it is the wrong
invariant subspace.
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To improve accuracy on ill-conditioned problem, it would be ideal to have a
structurally backward stable method.

Indefinite scalar products and symplectic transformations

Ultimately, the reason why the previous algorithm fails to preserve the eigen-
value pairing is that orthogonal transformations do not preserve the matrix
structure of the Hamiltonian.

This structure is intimately related with indefinite scalar products. Let us
consider the indefinite scalar product (bilinear form) defined by the matrix J,

i.e.,
. [0 o gt
(u,v)y =u*Jv = [z;] {I 0} [5;} = ujve — udvy.

The matrix H is skew-self-adjoint with respect to this scalar product, i.e.,
(u, Hv) = (—H*u,v); indeed, this is equivalent to Lemma TODO. Indeed, any
matrix H with Hyy = —H3y, Hoy = H3y, Hio = H{y is so, even without the
positive semidefiniteness constraint. These are called Hamiltonian matrices, and
they all satisfy the eigenvalue pairing lemma.

So we must look for orthogonal transformations with respect to this scalar
product.

Definition 14.1. A matrix S € C?"*2" is called symplectic if it is orthogonal
w.r.t the scalar product J, that is, if S*JS = J.

Lemma
If H is Hamiltonian and S is symplectic, then S™'H.S is Hamiltonian.

Proof: (STYHS)*J = J(STIHS) < (S71HS)*S*JS = S*JS(S™IHS) +—=
S*H*JS = S*JHS.

Remark: unlike orthogonal transformations, symplectic ones do not auto-
matically ensure stability: ||v|| small does not imply ||Sv|| small: for instance,
any matrix of the form S = [’3 AQT] is symplectic.
Orthosymplectic transformations

Ideal setting: construct successive changes of bases H +— S~'HS where S is
both orthogonal (for stability reasons) and symplectic (for structure preservation
reasons). These are called orthosymplectic matrices.

Examples of orthosymplectic matrices:

o If @ € C™*™ is any orthogonal matrix, then blkdiag(Q, @) is orthosym-
plectic.

e A Givens matrix that acts on entries k£ and n+k (i.e., that generated with
the Matlab commands

G = eye(2*n); G([k,n+k], [k,n+k]) = [c s; -s cl;

is orthosymplectic.
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The Laub trick
There is a certain orthogonal and symplectic matrix that reduces H to a
special form.

Theorem
Let U = Ui Ui be unitary s.t. Ui spans the stable invariant subspace.
Ua1 Uz Ua1
Then,
U —Us| . .
1. V= is orthosymplectic;
[Um Un1 P
* _ T T . . _
2. V¥HV = 0 T | with 771 upper triangular and 735 symmetric
—i1

(Hamiltonian Schur form).

Proof (1) follows from the fact that [g;ﬂ has orthonormal columns, and we
showed earlier that U5, U1 — Uf;Us; = 0.

(2) follows from the facts that [g;] spans an invariant subspace and that
V*HV is Hamiltonian.

An orthogonal symplectic algorithm

Numerically, the Laub trick is no more effective than the Schur method,
because they compute the same invariant subspace.

But the existence of this structured factorization suggests that there may be
a structure-preserving method to compute it.

Problem (“curse of Van Loan”)
Is there a structure-preserving QR method that produces the Hamiltonian Schur
form via a sequence of orthosymplectic transformations applied to H?

Roadblock: we have proved that a stable invariant subspace exists if (A, B)
controllable and G,Q > 0, but there are Hamiltonian matrices that do not
satisfy these assumptions; e.g., H = [_11 _21] with eigenvalues =+i.

= algorithms to compute a HSF must become unstable when G, Q are

ill-conditioned.

Extras: Chu—Liu—Mehrmann algorithm [Chu-Liu-Mehrmann ’98]
A solution comes by going through another, different decomposition: H =
URV*, with U,V orthosymplectic and

_|Ru1 Rao
=

with Rj;R5, upper triangular.
(Reminds of the SVD.)

It can be computed in O(n?) via backward stable orthosymplectic transfor-
mations.

Note that R is not Hamiltonian and A(#H) # A(R), in general.
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URV decomposition — sketch

Left-multiply by blkdiag(Q, Q) to get [

* K ¥ K X X
* ¥ ¥ ¥ ¥ ¥
* K ¥ K ¥ ¥
* ¥ ¥ ¥ ¥ ¥

* K ¥ ¥ ¥ ¥
| IS

OO * % % %

Left-multiply by a Givens on (1,7 + 1) to get [

O
* K K K X ¥
* X X X X ¥

EE I
| S

QOO * * ¥
* KK K KK

Right-multiply by blkdiag(Q, Q) to get [

* K ¥ ¥ X ¥
* ¥ K X KX ¥
* K ¥ ¥ X ¥

* ¥ K X KX K
—_

OOO* * *
* % O% ¥ %

*k ok ok ok ok ok
k ok ok ok ok ok
e Right-multiply by a Givens on (2,n+2) to get | 56655
0 % % % % %
0 % % % % %
k ok ok ok ok ok * % ok ok
k ok ok ok ok ok * % ok ok
e Repeat on smaller blocks to zero out the (2,1) block: | 556555, | 666 %
000 % % * 000 %
00 % % % % 000 %

URV — the final step
Finally, left multiply by blkdiag(Q, Q) to replace Ry, Re with QRy, QR} so
that QR R5Q* is upper triangular.

Note that H = URV together with symplecticity implies

_ v | B 12 | 7+
H=V [ 0 _RY, U-.
Then
*RHR* *
H =V 22 v
{ 0 —Rgngl]

This is a Schur-like decomposition that reveals the eigenvalues and eigenvectors
of H? (not of H). However, if v; is an eigenvector of H? then span(vy, Hvy) is
an invariant subspace of H, and it can be used to compute an eigenvector of H
and deflate it (many details omitted).
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Chapter 15

The sign function method
for CAREs

Sign-like methods for CAREs

Matrix sign iteration
1 _
Xy = 5 (X + X, Y, Xo=H.

It is not difficult to see that X} is Hamiltonian at each step (i.e., JX; =
—-X;J).

Lemma

e Let M be Hamiltonian. Then M ! is Hamiltonian, too.

e Let My, My be Hamiltonian. Then M; + M5 is Hamiltonian, too.

(Guiding idea: Hamiltonian matrices are ‘like antisymmetric ones’: proper-
ties that you expect for antisymmetric matrices will often hold for Hamiltonian,
t00.)

Structure-preserving sign iteration
In machine arithmetic, the X won’t be exactly Hamiltonian — unless we
modify our algorithm to ensure that they are.

Observation: H is Hamiltonian iff JH is symmetric.
Rewrite the iteration in terms of Zj := JX:

1
Zpy1 = i(Zk +JZN),  Zy = JH.

This version preserves symmetry exactly (assuming the method we use for
inversion does).

We can incorporate scaling.
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Towards doubling
Recall: in the sign iteration, if we set Y, = (I — X3)"'(I + Xj), then
Yis1 = — V2.

In an ideal world without rounding errors, we could compute Y, Y71,Ys, ...,
and then get the stable invariant subspace as ker Y., (or, rather, the invariant
subspace associated to the n smallest singular values of Y., since in an ideal
world without rounding errors it is nonsingular).

We can do something similar, if we work in a suitable format.

Standard Symplectic Form
Goal: write Yo = (I —H) 1 (I +H) as

v _ [ Gl ' [Ee 0O
"7 lo F Hy I|°

Trick: this is equivalent to finding M such that

M[(I - H) (I+H)]=[I Go  Eo O}

0 Fy Hy I}’
And this M must be the inverse of block columns (1,4).
Structural properties:
e if H is Hamiltonian, Y; is symplectic.
Proof: via (I —H)*J(I —H) =T +H)*JI +H).
o If Yy is symplectic, By = F§,Go = G, Ho = H{.
e Moreover, if G = 0, H = 0, then G = 0, Hy < 0 (tedious).

Doubling algorithm
I Gk}_l {Ek

I Giy - Eyt1 O
0o Er| |H,

Plan Given Yy = [ 0 E* Hpn I|
k+1

0
I] , compute Vi1 = —Y? = [

Similar to the ‘inverse-free sign method’ described earlier.

The swap: If Yy, = M; 'Ni, then —Y;2 = —M "N M I Nj, = M P M NGNG =
(MpMy,) " NNy, where My, Ny satisfy M "Ny, = —Ne ML e,

M N |:/j\\/l/kk] —0.
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Doubling: the swap

R Er, O
I Gy E, 0| |Hy [ 0
0 Fk Hk I 1 Gk
0 E
holds if
ék Ek _ Ek: 0 Hk I -
F, H, 0 Eil| 1 G
i Ek 0 Gk(I— Hka)_l —(I—Gka)_l
T L0 By | -(I - HyGy)Tt Hy(I = GipHg)™'”
Doubling: the formulas
Putting everything together,
Ek+1 0 . —Ek(I — Gka)_l O |Er O
Hk+1 I| E;Hk(I—Gka)_l I\ |H, 1

o —Ek(.[— Gka)ilEk 0
o Hy + E;Hk(l — Gka)_lEk I
and an analogous computation gives E} | |, Gg41:
Structured doubling algorithm

Eyy1 = —Ei(I — GxHy) ' Eg,

Giy1 =G + ExGr(I — Hka)71E27

Hyy1 = Hy, + Ef Hp(I — GpHy) ' Ey,.

SDA: details
Note that (even when the series does not converge)
Gk(I — Hka)_l =G+ GLH G, + G H,GLHi .Gy + - - - = (I — Gka)_le,

and this matrix is symmetric. If G} = BBy, then it can also be rewritten as
By(I — B} Hy,By,) "' B} (inverting a symmetric matrix).
Monotonicity If Hy < 0 then Gi(I — H,Gy)~! = 0. Hence, 0 < Gy < G; =

..,and 0= Hyp = Hy = Hy = ...
Cost As much as a 2n x 2n inversion M !N, if you put everything together.
Unlike the sign algorithm, we have a bound omin(I — HrGr) > 1 (because

Gy = 0, Hy, jO)
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SDA: the dual equation
To analyze convergence, we need to introduce another matrix. Let Y be the

matrix such that
-Y A -G||-Y -Y| »
w[T]-le HT]- )R

is the anti-stable invariant subspace of H, i.e., A(R) C RHP.

{}q spans the stable subspace of H* = —JHJ; we can prove that the
subspace has this form if (AT, CT) controllable (typically satisfied).

SDA: convergence (intuitively)

Theorem
In SDA, Ey — 0,Gr — Y, H, — —X. Convergence is quadratic, i.e., ||Hy +
X|| = O(pzk) for some p € [0,1), as k — oc.

Intuitive view Ej, — 0, approximately squared at each time. Hence

H_IG,C*IE,CO
o E; H, T

I },so—Hk.—>X.

has n eigenvalues — 0 and n that — co. ker Hy ~ { 7
— I

Dually, “ker 7—[,;1” (a thing that shouldn’t exist...) = {_?k} ,s0 G =Y.

SDA convergence (formally)
Proof some manipulations give

I _ I 1 —
Ho [X} =T -H)""(I+H) {X] = [X} (I-R)"HI+TR).
where S = (I — R)~}(I + R) has eigenvalues in the unit circle. Thus
LG [I] _[1][Bx 0][1] g
0 Ep||X| |X]||Hx I||X '
which implies

B = (I +GpX)S?,
Hy+ X = B; X8 = (82)(I + XG1)8% = 0.

The same computation on the dual equation gives G <Y, so Gy is bounded
and By — 0, H; + X — 0 (quadratically as S2k).
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Chapter 16

Methods for large-scale
CAREs

Methods for large-scale control systems
We give a hint of the methods used for large-scale control systems.

What does a large-scale control system look like?

FEzxample: the heat equation: finite-difference discretization of a 2D or 3D
structure, possibly with a nontrivial shape.

e Large, sparse A € R™*" produced by the discretization: the state evolves
locally.

e B € R™™ with m < n: the control acts only on a few points. Hence
G = BR™'B* has low rank.

e () = C*C is also often taken to be low-rank: the energy is based on
‘output’ values measured in a few points.

Large-scale Lyapunov equations

We focus on a simple problem: solving Lyapunov equations AX + X A* +
BB* = 0 with A(A) C LHP: then we can run Bass algorithm and Newton’s
method for CAREs.

Assumptions
e A(A)C LHP

e A sparse or at least with fast linear algebra operations v — Av, v —
(A —al)~tv (e.g., sparse-plus-low-rank, Toeplitz).

e B € R™™ with m < n. Actually we can take m =1, B = b € R™:
a rank-m matrix is the sum of m rank-1 matrices, and the Lyapunov
equation is linear.

100



Roadblock: the solution X is typically dense and full-rank (X > 0)!
Solution: often, X ~ ZZ* with a tall thin Z: it has decaying singular values
and low numerical rank (we will see why).

ADI (alternating-direction implicit iteration)
Idea Let’s convert our continuous-time problem (Lyapunov equation)

AX + XA*+bb" =0 (L)
to a discrete-time one (Stein equation)

AX + XA* +bb* =0, (S)
since those can be solved with a simpler fixed-point iteration.

Theorem
Let 7 > 0, so that A(A—7I) C LHP. Then, X solves (L) if and only if it solves
(S) with A:=(A—71)"YA+7I),b:=V2r(A—7I)"'b.

Proof Expand in two ways

A-TDXA—-7D)"—(A+7D)X(A+7I)" — 270" = 0.

Solving Stein equations
We can solve with the fixed-point iteration

Xo=0, X,=AX,_1A* +bb*. (FP)

Lemma .
If A(A) C LHP and 7 > 0, then A(A) C D (unit disk).

Proof If A € LHP, then dist(\, —7) < dist(), 7), thus Rj; } < 1.

Convergence theorem
For the iteration (FPJ),

X, — X = AR (X, — X) AP,

Proof Induction.
From the two results we get linear convergence to the solution X.

Extras: Time discretization A
Note that A and a (scaled) version of b be obtained by discretizing the control
system with the midpoint method:

Tz = Az + Bu
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is discretized to

Tr+1 — Tk

1
3 = B (Axk + Buy, + Azp41 + Buk+1) ,

ie.,
w1 = (1 = AT+ §A)zp + (I = §A) T Blug, + ups1) -

This specific method is particularly nice, because it preserves stability: the
open-loop system & = Az is stable iff x5 = (I — %A)_l(l + %A)xk is so.

Low-rank formulation
‘We have

X, = bb* + Abb* A x +A%bb* A% + ... 4 AFbb* A,
Or, in terms of its low-rank factor
Ze=1[b Ab A% ... AFD], Xi=Z,Z;.

Iterative computation

V1 = lA),
{Uk+1 = /Ah)k = (A — TI)il(A + TI)’Uk =V, + QT(A — TI)flvk.
Cost: One shifted solve with A per iteration.

Multiple shifts
The key to get faster convergence is changing the value of 7 at each step:
given an arbitrary sequence of positive shifts (or poles) 11,72, ..., we set

Ap = (A—7D) YA+ D), by = V27(A—7I) .
Then one can set up the iteration
Xo=0, Xp=AXp_ 1A%+ bpbr.
Proceeding in the same way one gets

Zo=[be Avbor AcAnrbis ... ApApi...Ashi].
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Rearranging the computation
It’s less clear from this formulation how to compute columns iteratively.
However one can rearrange things using commutativity:
LA Ay b

Vo EAk—10k—2

=(A—7D) N A+ D) (A= T D) A+ 1 I)(A = T—2])"'b

=(A—m2) M A+ D) (A= D) A+ 1 ]) (A= D) 710

———

=lwy

=lwzy

Thus we get wy = (A — 7,I)~'b and
wis1 = (A = 7o 1) THA + g Dy
= wj + (Th—j + Te—j1)(A = 7oy ) ~Hy.

Low-rank ADI: the formulation
Reversing the order of the 7; for simplicity, we get

Low-rank ADI

_ V27 -1
U1 :\/27'1(14—7'1) 1b, ’Uj = (’Uj+(7'j,1+7'j) (A—Tj.[) ’Uj).
\/2Tj_1

Zk:[vl Vg ... ’Uk].

One can also use complex shifts (details omitted, 7;s appears).
ADI: convergence
Proceeding analogously to the one-shift case, one gets
Xp— Xo = ApAy 1 Ay(Xo — XOAT - A Af = g(A)(Xo — X.)g(A)",
where g(z) = H§:1 %

If A=VAV~! then

A—75l
‘)\—i—le

k
Al = |[VgA VY < w(V
(A = [[Vg(A)V | < k( )féﬂ%g

How to choose 7;’s that make this norm small? If A has at most k distinct
eigenvalues, we can choose 7; = —\; to get g(A) = 0 and ezact convergence in
k steps.

If A has k clusters, we get a small ||g(A)|| after k steps (cfr. Arnoldi conver-
gence theory).
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ADI convergence
The ADI shift choice problem
k—1

N, = min max H
Tl Tk AEA(A) - o
j=

A=l
‘/\+Tj|.

To compute an optimal choice, we need A(A), unfeasible. And the choice
would change at each step k, requiring recomputation of previous iterates.

To solve the second issue, one usually computes a small number " of shifts
initially, before starting the iteration, and reuses them cyclically with 7, =
Timod(k,k’)- L0 solve the first:

Workaround 1 Often the max is taken on the largest/smallest eigenvalue.
Hence we run a few steps of Arnoldi on A and A~! to get {ju1,...,uq} that
approximate the extremal eigenvalues of A.

ADI optimal shifts

Alternatively,

Workaround 2 replace A(A) with a region C' C LH P enclosing the eigenval-
ues of A: for instance, if A = A*, all eigenvalues are in an interval C' = [a, b].
Then, look for

This is a classical problem from approximation theory: look for polynomials
that are small on C' and large on —C'. Explicit solutions can be constructed
from elliptic functions for many choices of C. It is known that 7, ~ r¥ for
a certain r < 1 (that depends on g in the symmetric case: worse bounds for
ill-conditioned A).

Consequence Since || X, — X | ~ r*, and rk X}, = k, it follows that o1 (X) <

~Y
r*. so X has low numerical rank.

Extra: Residual computation
Detail As a stopping criterion for ADI, we may use the residual AZ,Z} +
ZyZ;A* + BB*, but how to compute it without assembling large matrices?
For X, = Z,Z};, with Z;, € R™** we have

0 I 0
AZyZp + ZyZE A"+ BB = [Zy AZy B]|I 0 0|[Z, AZ, B]".
0 0 I
Using a QR of the tall thin [Zk AZy, B], we can compute this norm in

O(nk?).
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Rational Arnoldi
An alternative algorithm for large-scale Lyapunov equations comes from
Krylov subspace ideas.

Note that the computed Zj has columns of the form r(A)b, where r(z) =
p(x)/q(z), with fixed denominator ¢(z) = (z — 1) (z — 72) ... (x — 7).

Hence, our approximation Zj lives in the rational Arnoldi subspace

Ky(A,5) = {g(A)"'p(A)b: degp < k} = q(A) " Ky (A, ).
Idea: first compute this subspace, then solve the projected equation.

Galerkin Projection
Given an orthonormal basis Uy, of K, (A, b):

1. Set X}, = UkYkU;;
2. Assume ‘orthogonal residual’: U} (AXy + X A* + BB*)U, = 0.

Produces a projected Lyapunov equation
(UL AUR)Y + Y (U AUR)* + U BB*U, = 0.

Difficulty 1 Even if A(A) C LHP, the same property does not always hold
for U} AU;,.

Recall: the eigenvalues of Ay = U; AU}, are in the field of values of A, which
is hull A(A) for normal A, but larger (possibly by much) for non-normal A.

Difficulty 2 (main one, shared with ADI): good pole selection.
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