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Abstract

Given the n x n matrix polynomial P(z) = Y- | Pi?, we consider the associ-
ated polynomial eigenvalue problem. This problem, viewed in terms of comput-
ing the roots of the scalar polynomial det P(z), is treated in polynomial form
rather than in matrix form by means of the Ehrlich-Aberth iteration. The main
computational issues are discussed, namely, the choice of the starting approx-
imations needed to start the Ehrlich-Aberth iteration, the computation of the
Newton correction, the halting criterion, and the treatment of eigenvalues at
infinity. We arrive at an effective implementation which provides more accurate
approximations to the eigenvalues with respect to the methods based on the QZ
algorithm. The case of polynomials having special structures, like palindromic,
Hamiltonian, symplectic, etc., where the eigenvalues have special symmetries in
the complex plane, is considered. A general way to adapt the Ehrlich-Aberth
iteration to structured matrix polynomial is introduced. Numerical experiments
which confirm the effectiveness of this approach are reported.
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1. Introduction

Given two positive integers k, n and matrices P; € C"*", j = 0,...,k
consider the matrix polynomial

k
P(z) = Zijj (1)
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where P, # 0, so that P(x) has degree k, and define the scalar polynomial
p(z) = det P(z) of degree N < nk. Assume that P(z) is regular, that is p(x) is
not identically zero.

Under such an assumption, the polynomial eigenvalue problem associated
with P(z) consists in computing the roots of the polynomial p(x) which are
called the eigenvalues of the matrix polynomial P(z). Observe that, if P; has
not full rank, then N < nk. In this case, it is convenient to introduce nk — N
eigenvalues at infinity and say that the matrix polynomial P(z) has nk eigen-
values including the nk — N eigenvalues at infinity.

Our interest is addressed to the design and analysis of efficient algorithms
for the polynomial eigenvalue problem based on the Ehrlich-Aberth iteration
[, 12, 19].

Recently, much literature has been addressed to the polynomial eigenvalue
problem (PEP). For the numerical solution of PEPs, fast and numerically stable
methods are sought. Several algorithms have been introduced based on the
technique of linearization where the polynomial problem is replaced by a linear
pencil with larger size and the customary methods for the generalised eigenvalue
problem are applied. For more details, see for instance [18, 127, 128, [47] and the
references therein.

Specific attention concerns structured problems where the matrix coefficients
P; have some additional property which is reflected on structural properties of
the roots. For instance, in the case of T-palindromic polynomials [23,143], where
P; = P,;{j € C™*", the roots are encountered in pairs (z,1/z). In general, we
may consider the case of structures where the roots can be grouped in pairs as
(z, f(z)), where f(z) is any analytic function such that f(z) = f~!(x) [14]. In
this case the goal is to design algorithms which take advantage of this additional
information about the eigenvalues and deliver approximations to the eigenvalues
which respect these symmetries independently of the rounding errors.

The Ehrlich-Aberth iteration (EAI) was historically first mentioned in [7]
and afterwards independently rediscovered many times. It is one of the many
simultaneous iteration techniques available in the literature for the numerical
approximation of polynomial roots [29,140]. In |3, 4] the EAT has been combined
with various techniques like the Rouché theorem, the Newton polygon technique,
and the Gerschgorin inclusion theorems for arriving at efficient and robust soft-
ware implementations. The package Polzeros, designed in [3], provides a robust
and reliable tool for approximating roots of polynomial in floating point arith-
metic. The package MPSolve designed in [4] provides certified approximations
to any desired number of digits of the roots of any polynomial.

The EAT has been used in [5] to solve the generalised tridiagonal eigenvalue
problem where the software provides effective accelerations in terms of CPU
time. It has been used in [41] for quadratic hyperbolic tridiagonal eigenvalue
problems.

In this paper we present an adaptation of the Ehrlich-Aberth method for the
numerical solution of PEPs. The main computational issues that we analyze
are the choice of the starting approximations, the computation of the Newton
correction, the halting criterion, the design of a posteriori error bounds, and the



management of the problematic (multiple) eigenvalues at zero and at infinity.

Concerning the choice of the starting approximations, we propose a gener-
alization to matrix polynomials of a technique introduced in [3] for scalar poly-
nomials based on the Rouché theorem. In fact, we rely on the generalization to
matrix polynomials of the Rouché theorem given in [34] and provide a way to
determine an annulus in the complex plane which contains all the eigenvalues.

The Newton correction is computed by means of Jacobi’s formula for the
differential of the determinant of any square matrix in terms of the trace of the
matrix P(z)"1P’(z). The halting condition is given in terms of the condition
number of P(z). Eigenvalues at zero and at infinity can be removed, to a certain
extent, by using the specific features of the EAI relying on the information
provided by the singular values of Py and P,. A posteriori error bounds are
given by constructing a set of inclusion disks relying on the Gerschgorin theorem
and adapting the results of [45] to the case of matrix polynomials.

The computational analysis of this method shows that the number of arith-
metic operations (ops) is O(k?n® +kn?). In the case where the degree k is large
with respect to the square root of the matrix size n, this complexity bound
compares favourably with the bound O(k3n3) of the customary matrix-based
algorithms like the QZ applied to a linearization. Cases of this kind can be
encountered, for instance, in the truncation of matrix power series [49].

The EAT does not compute the eigenvectors, which are sometimes needed as
well. Nevertheless, after a good approximation of the eigenvalues is obtained,
other methods, e.g. the SVD or the inverse iteration, can be used to compute
the eigenvectors without increasing the complexity of the algorithm. We were
able to compute eigenvectors with high accuracy using the eigenvalues given by
the EAI

We consider the case of polynomials endowed with specific properties like
palindromic, T-palindromic, Hamiltonian, symplectic polynomials, whose eigen-
values have special symmetries in the complex plane. We propose a unifying
treatment of this class of structured polynomials and show how the EAI can be
adapted to deal with these classes in a very effective way. In fact, our variant
of the EAI enables one to compute only a subset of eigenvalues and to recover
the remaining part of the spectrum by means of the symmetries satisfied by the
eigenvalues. By exploiting the structure of the problem, this approach leads
to a saving on the number of operations and provides algorithms which yield
numerical approximations fulfilling the symmetry properties.

We conclude our discussion by presenting the results of several numerical
experiments performed in order to test the effectiveness of our approach in terms
of speed and of accuracy. We have compared the Ehrlich-Aberth iteration with
the Matlab functions polyeig and quadeig[l6]. In the structured case, we
have also considered, when available, other structured methods, say, the URV
algorithm by Schroder [43].

We show that the EAT is much faster than the available techniques in the case
where the degree is larger with respect to the size of the matrices. Moreover, for
the test problems NLEVP of |2], it turns out that the accuracy of the computed
approximations is generally better than the accuracy obtained with the available



algorithms.

The paper is organised as follows. In Section 2] we recall the Ehrlich-Aberth
method and discuss the main computational issues encountered in its imple-
mentation. In Section [B] we consider the case of “structured polynomials”, i.e.
the case where the matrix coefficients have some special properties. Section [4]
reports the results of the numerical experiments.

2. The Ehrlich-Aberth method for matrix polynomials

Given a vector y(©) € CV of initial guesses for the N roots of the polynomial
p(z), the EAI provides the sequence of simultaneous approximations 3 given
by
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where N (x) is the Newton correction. It is easy to check that the jth update
in (@) is nothing else but the Newton iteration applied to the rational function
p(z)/ HéV:L 025 (T — yél)), so that the EAI provides a way to implement the
implicit deflation of the roots.

Besides the Jacobi-style version of EAI we may formulate the Gauss-Seidel
version of EAI, that is
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The method, in the Jacobi version, is known to converge cubically for simple
roots and linearly for multiple roots [40]. In the Gauss-Seidel version, con-
vergence is slightly faster. In practice, good global convergence properties are
observed; a theoretical analysis of global convergence, though, is still missing
and constitutes an open problem.

With the term wvector iteration of the Ehrlich-Aberth method we refer to the
step which provides the vector yt1 given the vector y(¥. We use the term
scalar iteration for indicating the single step performed on the generic scalar
component of the vector y(¥),

In the case of a scalar polynomial of degree IV the cost of a scalar iteration
is O(N) arithmetic operations. In this way, the cost of a vector iteration is at
most O(N?) ops and is substantially reduced when most components have been
numerically approximated, so that few scalar iterations must be performed in
order to carry out the vector iteration.



The number of scalar iterations needed by the floating point implementation
in order to find approximations which are exact roots of a slightly perturbed
polynomial is, in practice, O(N) if the starting approximations are computed
by means of the Newton polygon technique [3]. This technique is particularly
effective when the polynomial has roots with moduli which are very unbalanced.

Crucial aspects for an effective implementation of the EAI to matrix poly-
nomials are

1. the computation of the Newton correction p(z)/p’(x) given the value of x
and of the input coefficients P;, j =0,...,k;

2. a criterion for stopping the iterations;

3. the choice of the initial approximations.

2.1. Computing the Newton correction

In the literature, methods based on some factorizations of P(z) were de-
veloped to compute the Newton correction for functions that have the same
zeros of p(z): e.g., the method in [21], later proved to lack theoretical rigour
and corrected in [19]. Other kinds of Newton-like approaches were presented in
[20, 42].

If one wishes to work with p(x) itself, a naive way to compute the Newton
correction p(x)/p’(x) would be to evaluate first the coefficients of the polyno-
mial p(z), say, by means of the evaluation-interpolation technique, and then to
apply right after the Ehrlich-Aberth method to the scalar equation p(z) = 0.
This approach would however come across numerical problems due to numerical
instability and to overflow and underflow situations encountered in the compu-
tation of determinants.

It is therefore wise to conceive a strategy to avoid the explicit calculation of
the coefficients of p(z).

An effective way rests upon the well-known Jacobi’s formula for the differ-
ential of the determinant of any invertible square matrix A:

d(In(det A)) = tr(A~dA), (4)

where tr denotes the trace. This way, we obtain the following expression for the
derivative p’(z)

@) — ddetg(x)) d];i:z:)).

This formula allows us to evaluate the Newton correction p(z)/p’(x), which
is the centerpiece for the EAI, without explicitly calculating p(x):

= det(P(z)) - tr(P(z)"* -

p(x)/p'(z) = m (5)

An evaluation of P(z) and P’(x) by means of Horner’s method, followed by
a numerical matrix inversion, allows to compute the trace of P(z)"!P’(z) in
O(kn? + n3) operations.



We mention that, even though we independently formulated it, we found
out later on that the possible use of () in a numerical method for PEPs had
been already suggested in [12, 122]. However, in these instances it was proposed
to use it to apply the Newton method to approximate each single eigenvalue in
sequence, mentioning the possibility to use an implicit deflation of previously
found roots [30], in order to avoid that the method converges twice to the same
eigenvalue. This leads to a formula akin to (), @]), with the difference that
the summation in the term A is performed only up to the number of roots
that have already been approximated. This is a crucial detail, because such a
sequential implementation of the Newton method does not seem to achieve the
same efficiency with respect to the EAIL

2.2. Stopping criterion

At the generic ith vector iteration it is crucial to decide whether the update
of the jth component of the vector y**!) must be performed or the scalar
iteration in that component must be halted.

Observe that, if £ is a root of p(x), that is det P(£) = 0, then as the approx-
imation = gets close to £ the matrix P(x) becomes ill-conditioned. This makes
quite natural to stop the iterations if the reciprocal of the condition number
p(P(z)) is less than a prescribed tolerance 7;. This criterion makes sense if
the eigenvalue that we want to approximate is semi-simple. In the case of a
defective eigenvalue A with Jordan chains of length at most m, in view of the
results in [39], it is more convenient to stop the iterations if the reciprocal of
w(P(z)) is less than 7i™. This latter condition is hard to implement since it is
not easy to evaluate numerically the length of the Jordan chains of a matrix
polynomial. Using the former stopping criterion may lead to a premature halt
of the algorithm in the case of defective eigenvalues.

As an alternative to the previous stopping condition, following [46], define

alz) = E?:o |zt|. If y§i) is not an eigenvalue of P(x) then the quantity

(i) = <| (P(y§i)))_1 e (1 +a(y§i)))) -1

measures the backward error for the approximation y(i), and can be cheaply

J
evaluated during the EAI. The iteration can be halted when n(yj(-l)
than a given tolerance.

For simple eigenvalues, no significant differences emerged between the two
alternative possibilities. Therefore, our default choice was in favour of the cri-
terion based on the condition number.

It is also convenient to add, with the “or” logic operator, the following
condition

) is smaller

IV () /(1 = N () A (5D, y D) < oy (6)

where 75 is a given tolerance. This condition says that the computed correction
is too tiny and would not change the significant digits of the current approxi-
mation.



2.8. Choosing initial approzimations

As pointed out in |L, 13, [15], practically effective choices of initial approxi-
mations for the EAI are complex numbers equally displaced along circles. For
instance, in [1] it is proposed to choose initial approximations displaced along
a circle centered at the origin of sufficiently large radius so that it contains all
the roots. In [15] the radius of the circle is suitably chosen. This strategy does
not work effectively for polynomials having zeros with very large and with very
small moduli. In [3] this drawback is overcome by considering different circles
centered at the origin of suitable radii. The computation of these radii relies on
the Rouché theorem.

Here we try to extend this technique to a certain extent. We recall that,
according to the Rouché theorem, if s(x) and ¢(x) are two polynomials such
that

Is(@)| > lq(a)], for [2] =,

then s(z) and s(z) + ¢(z) have the same number of roots in the open disk {z €
C: |z| <r}. Applying this property with s(z) = 2™ and ¢(z) = p(x) — s(z),
for 0 < m < N, implies that if ™ > Z;V:O’#m laj|r7 then the polynomial
p(z) has m roots in the open disk of center 0 and radius r. This property
is at the basis of the criterion described in [3], based on the Newton polygon
construction, for choosing initial approximations equidistributed along different
circles centered in 0.

In order to extend this criterion to the case of matrix polynomials we need
a generalisation of the Rouché theorem to matrix polynomials. We report the
following result of [34] which we rephrase in a simpler way better suited for our
problem.

Theorem 1. Let S(z) and Q(z) be matriz polynomials and let r be a positive
real. If S(2)*S(x) — Q(x)*Q(x) is positive definite for |x| = r, then the polyno-
mials det S(z) and det(S(x) + Q(x)) have the same number of roots of modulus
less than r.

The following result is an immediate consequence of the above theorem ap-
plied to the polynomial P(z) of () with S(z) = 2™ P,, and Q(z) = S_F_, i T P

Corollary 1. Assume that

k k
P Ppr®™ — ( Z ijcj)( Z Pjx) =0, for |z|=r, (7)
J=0j#m j=0j#m

where A = B means that A— B is positive definite. Then the matriz polynomial
P(z) has mk eigenvalues in the open disk of center 0 and radius r.

Observe that if det P,, = 0 then condition ([7l) cannot be verified. In fact,
the vector v such that P,,v = 0 would be such that

k k
(Y PR (Y. Pad)u <o
Jj=0,j#m §=0,j#m



which is absurd.

In particular, if det Py # 0 the above corollary, applied with m = k, implies
that all the eigenvalues of P(z) are included in the disk of center 0 and radius
r provided that

k—1 k—1
r* PP — (O Prat) (Y Pa?) = 0, for |a| = (8)
§=0 j=0

Observe that the latter condition is implied by

k—1
rFPiPy = Y PRI+ Ty p(IPiI* IRl + | Bl Py)). (9)
7=0 7>1

Similarly, applying Corollary [l with m = 0 provides a disk where P(x) has
no eigenvalues.

As an example of application, consider the 5 x5 quadratic matrix polynomial
P(z) = Az? + Bz + AT where B is the tridiagonal matrix defined by the entries
[1,2,1], and A is the matrix with diagonal entries 100, 1,1/1000, 1/100000, su-
perdiagonal entries equal to 1 and with zero entries elsewhere. The eigenvalues
of P(x) have moduli 2.0050e+05, 1.4969e+03, 1.0000e+00, 1.0000e+00,
1.0000e+00, 1.0000e+00, 6.6805e-04, 4.9874e-06. The criterion based on
the above corollary in the form () yields the bound 4.4e — 6 < |z| < 2.24e5
which is quite good. Applying condition (@) yields the bounds 1.96e — 6 < |z| <
5.1e5 which is still good.

Similar results have been obtained in [44] in the framework of tropical alge-
bras. A different heuristic approach, which relies on Corollary [ is to select the
values of the radii by considering the inequality ||Pp,|2r™ > 25201 itm | Pl 2r?

in place of (7). This strategy, applied in the form 7% > Zf;ol | Pi]|2r® leads
to the criterion based on computing the Newton polygon of the polynomial
Ef:o | P[22, This is the default choice of the starting approximations per-
formed in our implementations.

2.4. A posteriori error bounds

In the case of a scalar polynomial p(x) of degree N, given a set of approxi-
mations x1, ...,z to the roots of p(x) it is possible to prove that [45] the set of
disks D; = D(«;, ;) of center x; and radius r; = n|p(z;)/(pn H£17j¢i(1i—xj))|
is such that

1. the union of the disks contains all the roots of p(x)
2. each connected component formed by the union of, say, ¢ overlapping
disks, contains ¢ roots of p(z).

The set formed by D;, ¢ = 1,..., N with the above properties is said set of
inclusion disks.

In the case of a matrix polynomial P(x) where det P, # 0, it is quite cheap
to compute a set of inclusion disks. In fact, if P(x) = LU is the PLU fac-
torization of P(x), then |p(x)| = |det P(x)| = H?Zl luj |, where U = (u; ;).



Moreover, the leading coeflicient py of det P(x) coincides with det P, which
can be computed once for all. Observe that the LAPACK routine zgesv which
solves a linear system with the matrix P(z), used to compute the Newton cor-
rection 1/trace(P(x) ™1 P'(x)), applied with = z;, provides at a negligible cost
also the radius r;.

The availability of a set of inclusion disks enables one to perform a cluster
analysis. In fact, once an isolated disk has been detected, we have isolated
a single eigenvalue of the matrix polynomial P(x). Once we have detected a
set of ¢ overlapping disks isolated from the remaining inclusion disks, we have
detected a cluster formed by c eigenvalues of P(z).

A different a posteriori error bound can be obtained by using a classical
result |17]. The disk of center x; and radius #; = n|p(z;)/p’(x;)| contains a root
of the polynomial p(x). However, the set of disks obtained in this way does not
fulfill properties 1 and 2 of the set of inclusion disks. It is worth pointing out that
the computation of 7; is inexpensive since the Newton correction p(z;)/p’(x;) is
computed by the EAI. Moreover, this a posteriori error bound still holds if the
leading coefficient Py is singular.

2.5. Multiple eigenvalues

Computational difficulties may be encountered in the case of multiple eigen-
values. In fact, the rate of convergence for multiple eigenvalues is linear, with
respect to the cubic behaviour for simple eigenvalues. Moreover, for defective
eigenvalues the standard stop condition may lead to a premature halt. For this
reason, if it is possible to detect a priori multiple eigenvalues, it is advisable to
deflate them; if it is not possible to spot all of them theoretically, even lower
bounds on the multiplicity are very helpful. If multiple eigenvalues are not pre-
dicted theoretically, one must rely on the cluster analysis to identify them and
modify accordingly the stopping criterion.

A common situation that leads to multiple eigenvalues is met when the
extremal coefficients are rank-deficient matrices. In this case, 0 and/or oo have
multiplicity greater than or equal to 1. This situation can be circumvented to
a certain extent.

In the case of m eigenvalues at infinity, one may just start with an approxi-
mation vector y of length nk — m, acknowledging that the determinant p(x) has
in fact degree nk —m; if there are m zero eigenvalues it is possible to set to zero
m components of the vector 3(°) avoiding to update them.

The number of null singular values of Py provides a lower bound to the
number of null eigenvalues of P(z). Similarly, the number of zero singular
values of Py provides a bound to the number of eigenvalues at infinity. This way,
the precomputation of the SVD of Py and P, may increase the performance of
the EAI Equivalently, one may perform any rank-revealing factorization (e.g.,
QR) instead of the SVD. Sometimes, the structure of the coefficients allows
to achieve better bounds (e.g., if the same rows/columns of many consecutive
extremal coefficients are zero).

In our implementation, the rank of the extremal coefficients is tested. If it is
less than n, it is also checked if Py and P; (resp., Py and Px_1) share any common



zero row/column. Thus, any manifest presence of zero and infinite eigenvalues
is exploited, forcing deflation of all the guaranteed roots. Moreover, if the test
detects the presence of eigenvalues at 0 (resp., 00), in order to avoid a premature
stop for other undetected eigenvalues at 0 (resp., 0o) the stopping criterion is
made stricter. The stronger stop condition requires that, for eigenvalues smaller
(resp., larger) than a given bound, either the relative correction criterion (@) is
satisfied with tolerance 75 or the relative correction criterion (@) is satisfied with
tolerance 721 /2 and, simultaneously, the reciprocal condition number criterion
is satisfied with tolerance 7;. This heuristic device worked very effectively in
our experiments, leading to satisfying results also in problems with multiple
eigenvalues at either zero or infinity (see Section HI).

If the leading coefficient Py is singular and if the degree of p(z) = det P(x)
is not available together with the leading coefficients of p(x), then it is not
possible to generate a set of inclusion disks and to perform a cluster analysis.
However, in this case we may apply an effective technique based on a rational
transformation of the variable x. For instance, the variable z is replaced by the
Mébius function z = 2(z) = (az + )/(yz + §) such that ad — y8 # 0, and the
polynomial P(z) is replaced by the polynomial Q(z) = (vz + 6)*P(z(z)). This
way the eigenvalues at infinity of P(z) are mapped into eigenvalues of Q(z) at
—d&/~. Moreover, Q(z) has no eigenvalues at infinity provided that o/ is not
eigenvalue of P(z). The substitution of variable can be performed implicitly
without actually computing the coefficients of Q(z) except for Q). We refer the
reader to Section Bl and to [37] for more details.

2.6. Linearization as a possibility

In the paper [13] the computation of the Newton correction was carried out
by first linearizing the polynomial by means of companion-like pencil, and then
by evaluating the trace by means of an LQ factorization. This approach has
a computational complexity of O(n® + kn?) ops per scalar iteration, which is
the same that is achieved by our algorithm. However, this cost can be reduced
to O(n?k?) ops if the matrix pencil is reduced to triangular-Hessenberg form
before the Jacobi formula is applied. This fact is the main advantage of using a
linearization. However, linearization techniques, if not properly used, may lead
to an undesired increasing of the eigenvalue condition numbers [1§].

3. The case of structured polynomials

The EAI is particularly suited to deal with matrix polynomials endowed
with specific structures of the matrix coefficients. We are interested in matrix
structures which induce particular symmetries on the location of the eigenvalues.
Polynomials of this kind are encountered in the applications and include, for
instance, palindromic, T-palindromic, symplectic and Hamiltonian polynomials.

Customary PEP-solving algorithms, such as the application of the QZ to
any suitable linearization of the polynomial, are not able to fully catch these
symmetries of the spectrum. In the literature, there are specific matrix methods

10



that achieve this goal. The EAI enables to exploit the additional information
both in the computation of the Newton correction and in the choice and in the
management of the (initial) approximation of the roots in view of the structure-
induced symmetries. We will see this later on.

Assume that the structured PEP is such that the eigenvalues appear in pairs
{z, f(z)}, with f(f(z)) =  Vz. A naive adaptation of the EAI to this property
would be to apply (@) or [B]) updating only the first half of the components of the
vector y and simultaneously imposing (") = f(y(="%/2), i =nk/2+1,...,nk.
In numerical experiments, this approach seems not to be always efficient in
terms of number of scalar iterations needed for numerical convergence. This
motivates the design of more sophisticated structured variants of the EAI, that
we are going to describe in the following.

Before analyzing the various classes of structured matrix polynomials, we
recall some basic definitions of special matrices.

An n x n square matrix A is said to be symmetric if AT = A and skew-
symmetric if AT = —A. Let n = 2m. The matrix A is said to be Hamiltonian
if it is such that ATJ = —J A where J is the matrix (7?”1 16" ); A is said to be
skew-Hamiltonian if it is such that ATJ = JA; A is said to be symplectic if it
is such that ATJA = J.

Every skew-Hamiltonian matrix can be obtained as the square of a Hamil-
tonian matrix, and conversely the square of a Hamiltonian matrix is always
skew-Hamiltonian|[11]. Symplectic matrices are exponential of Hamiltonian ma-
trices.

3.1. Skew-Hamiltonian and even-dimensional skew-symmetric

A skew-symmetric polynomial P(z) is a polynomial whose coeflicients P;
for 5 =0,...,k, are skew-symmetric constant matrices. If the coefficients have
even size n = 2m, we say that P(x) is an even-dimensional skew-symmetric
polynomial. A skew-Hamiltonian polynomial is defined as a polynomial whose
coefficients P; are all skew-Hamiltonian matrices. Classical eigenvalue problems
for skew-Hamiltonian matrices [48] are a special case of skew-Hamiltonian PEPs.

These two classes of polynomials are closely related, because multiplication
by J maps one class onto the other. A common feature is that the spectrum of
any polynomial in these two classes contains only eigenvalues of even multiplic-
ity. In fact, the determinant of a matrix polynomial P(z) belonging to these
two classes can be written as

p(z) = det P(z) = g(x) - ¢(x),

for a suitable polynomial g(x). For the special case of a real skew-symmetric
matrix pencil, a proof was given in [24] where a special Kronecker form was
derived. The more general case comes from classical results on determinants
[35]. Let us give here a simple proof of the statement for an even-dimensional
skew-symmetric complex matrix polynomial using modern terminology.

11



Proposition 1. Let P(z) = —P(z)T be a 2m x 2m skew-symmetric matriz
polynomial. Then p(x) = det P(z) = q(x) - g(x) for some scalar polynomial

q(z).

Proof. We shall prove the proposition by induction on m. For m = 1 the
statement is obvious. Suppose now that any (2m—2) x (2m —2) skew-symmetric
polynomial has the desired property. Let II be a 2m x 2m permutation matrix
and let Q(x) := IIP(z)[17. Suppose that I is such that

Qo(z) =Q(1:2,1:2) = ( _To(x) 7“((:)1?) )

is nonsingular, where r(z) is a suitable nonzero scalar polynomial. Notice that
such an assumption can be safely made because if that was false for any II

then P(z) = 0 so p(z) = 0 and there would be nothing to prove. Now let
Qz) = (f;)((;))T 5‘1(8) ), where the polynomial matrices A(z) and Q1(z) have,
respectively, dimensions 2 X (2m — 2) and (2m — 2) x (2m — 2); also, let p(z) :=
r(z)™~1. Define the rational function S(z) 1= Q1(z) + == A(x)T (% §) A(=).

r(x)
Clearly, r(z)S(z) is a (2m — 2) x (2m — 2) skew-symmetric matrix polyno-

mial; therefore, by the inductive hypothesis, det S(z) = Zgzgz where 6(z) is a

suitable scalar polynomial. Moreover, S(x) is the Schur complement of Qq(x).

2 2
Thus, p(z) = %, so p(x) is the square of some scalar rational function

q(z) = %. Since p(z) is a polynomial, g(z) must be a polynomial as well. OJ

This is a particularly useful property which can be fully exploited by the
Ehrlich-Aberth method. In fact, instead of applying the EAI to the polynomial
p(z) of degree 2mk, one can apply the EAT to the polynomial ¢(z) of degree mk
even though ¢(x) is not explicitly known.

More precisely, since p'(z)/p(x) = 2¢'(z)/q(x), one can compute the Newton
correction ¢(x)/q'(x) by means of

q(2)/q' () = 2p(x) /P (x) = 2/tx(P(x) "' P'(x)).

This way, the length of the vector of the approximations y in ([@) or in
@) is reduced from 2mk to mk, moreover, the skew-Hamiltonian or the skew-
symmetric structure of the coefficients can be exploited in the computation of
P(x)"tP'(z).

8.2. Palindromic and symplectic

The polynomial P(z) is called purely palindromic if RevP(z) = P(x), where
the reversal polynomial Rev(P(z)) is defined by RevP(x) := x*P(z~'). The
polynomial P(z) is called T-palindromic if RevP(x) = P(x)T. Both these
structures induce a symmetry (x,1/2) in the spectrum. There is a vast literature
on this kind of structure; see, e.g., [23, 125, 27, 43] and the references therein.
The same structure appears in the standard eigenvalue problem for a symplectic
matrix[10].
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For this class of PEPs the change of variable z := 24 1/z is useful. In [13] it
was shown that the use of a non-standard polynomial basis, called the Dickson
basis, leads to a suitable linearization of the purely palindromic case. Moreover,
it was shown that if P(x) is T-palindromic then it is possible to build a new
skew-Hamiltonian matrix polynomial M (z) such that det M (z(x)) = p(z) - p(x);
the Dickson basis was then used to obtain a useful linearization. In the follow-
ing, we will show how to avoid the explicit use of the Dickson transformation.
This has the advantage that there is no potential loss of accuracy for very large
eigenvalues unlike the case of the algorithm in [13] where the linearization in-
troduces unwanted defective eigenvalues at infinity which may create numerical
problems (although such problems can be effectively amended by a structured
refinement [14]).

If nk is even, then by means of simple formal manipulations one may show
that ¢(z) := 2(2)"""? . p(x(2)) is a polynomial in z, where x(z) = (z +
Vz2—=4)/2 or x(z) = (2 — V22 —4)/2, i.e., z(z) is one of the two branches
of the inverse function of z(z) = z + 1/x.

Moreover, taking derivatives in the latter equation leads to an explicit ex-
pression for the Newton correction ¢(z)/q’(z) given in terms of p(x)/p’(x)

az) _ 1-1/a?
() p@)/p(@) —nk](2a)’

This equation enables one to apply the EAI to the polynomial ¢(z). Once
its roots 21, . .., 2px/2 have been computed, the eigenvalues of P(z) are given by
the pairs (2, 1/x;) which are the roots of the quadratic polynomial 2% — z;x + 1.
This approach has the advantage to work with an approximation vector of half
the size and to deliver the solution as pairs (x,1/x).

It is important to point out that the applications z — © = (2 £ V22 — 4)/2
is ill conditioned at z = £2. Therefore, loss of accuracy is expected near z =
+1. In this case, a refinement step is advisable. Such a refinement may be
implemented by an unstructured version of the EAI, by the naive strucutred
EAI, or with other structured refinement methods |14].

If nk is odd, then —1 is necessarily an eigenvalue of the palindromic PEP
and there is no need to approximate it. To calculate approximations of the
remaining nk — 1 eigenvalues, there are two possible strategies.

As a first possibility, one may consider the new matrix polynomial Q(x) =
(x+1)P(x) which has even degree. The eigenvalues of Q(z) are those of P(x) and
the eigenvalue —1 with multiplicity increased by n. Therefore, the previously
described technique can be applied. Only nk — 1 roots of det(Q(x)) are needed,
because n+ 1 roots are a priori known to be equal to —1. Thus, one could apply
the EAI ) or @) with an approximation vector y of n(k + 1) components of
which n+1 are set equal to —1 in order to immediately achieve implicit deflation
of the roots; or, working in the variable z in order to extract the structure, the
SEAI (I0) can be used setting (n + 1)/2 starting points equal to —2.

A second possibility is to set z := w? and to consider the eigenvalues of
the polynomial Q(w) = P(z(w)). The scalar polynomial ¢(w) := det Q(w) has

P (@)/p(x) = te(P(x) " P'(x)). (10)
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2nk roots, which are the square roots of the solutions of the original equation
p(z) = 0 that we have to solve. In particular only 2nk — 2 roots are to be
determined, since g(w) = 0 has two known solution at w = =£i. It is useful to
set z := (w + 1/w)? = z + 1/x + 2. Defining

N q(w)
q(w) T wnk+1 + wnk—=1"’
it is easy to check that r(z) := g(w(z)) is a polynomial in z. Therefore we

may restrict the attention to computing the roots of r(z). Once they have
been computed, the evaluation of the function w(z) at these roots provides the
roots of g(w) . The evaluation of z(w) at these latter roots yields the sought
eigenvalues of P(z). In order to compute the roots of r(z) we may apply the
EAT to the polynomial r(z). The following equations provides a tool to compute
the Newton correction r(z)/r’(z) needed by the EATL

r(z) _ 2w(1 — 1/w?)
r(z)  q(w)/q(w) = [(nk + D)w? + nk — 1]/ (w? + w)’

or in terms of the original variable z

r(z) 1—1/a?
() = P (@) — [k + Dz + 0k — 1] (222 + 22)°

At the moment we have no clear elements to say which of the two possibilities
is more convenient. We plan to investigate in this direction.

We conclude this subsection mentioning that also antipalindromic and anti-
T-palindromic polynomials (RevP(x) = —P(z) and RevP(z) = —P(z)T) have
a {x,1/x} symmetry. Their determinants are pure palindromic if n is even
and antipalindromic if n is odd [26]. The former case is exactly the same as
above. The latter case is also easy, because a scalar antipalindromic polynomial
is always equal to x — 1 times a scalar pure palindromic polynomial. Moreover,
it is possible to prove [26] that 1 is always a root of a scalar antipalindromic
polynomial, and —1 is always a root of even-grade antipalindromic polynomial,
so according to the grade there are either one or two exceptional eigenvalues
with odd multiplicity. Therefore, it is easy to extend our technique to this class.

3.3. Hamiltonian/skew-Hamiltonian and even/odd

An even (odd) polynomial is such that P; is symmetric for all even (odd)
values of j and is skew-symmetric for all odd (even) j. Similarly, the coefficients
of a Hamiltonian/skew-Hamiltonian polynomial are, alternatively, Hamiltonian
and skew-Hamiltonian matrices. The classes of even-dimensional even/odd poly-
nomials are easily mapped onto the classes of Hamiltonian/skew Hamiltonian
polynomials by a multiplication by J. Amongst the huge literature on these
classes of polynomials see, for instance, [31],132,133,143] and the references therein.
Classical eigenvalue problems for Hamiltonian matrices [48] are a special case
of skew-Hamiltonian PEPs.
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The matrix polynomials belonging to these classes have eigenvalues coming
in pairs (x,—z). In particular, if nk is odd, then either x = 0 (if Py is skew-
symmetric) or z = oo (if Py is skew-symmetric) is an eigenvalue. Notice that
this is never the case for Hamiltonian/skew-Hamiltonian polynomials, because
they are only defined for even n.

Let z := 22. Just like the T-palindromic case, also for even/odd polynomials
it is possible to follow the ideas exposed in [13] and build a new matrix polyno-
mial M (z) whose determinant is equal to p(x(z)) - p(z(z)). The following result
demonstrates the way it can be done for an even polynomial.

Proposition 2. Let P(x) be an even matriz polynomial, and let z = x2. Define

B(z) := w and C(z) := ﬁw, so that P(x) =

B(xz) + IC(IQ)- Then M(z) := (B(z) ZC(Z)) is a skew-Hamiltonian matriz

C(z) B(z)
polynomial such that det M (z) = [p(x(2))]?. If 0 # xq in C is an eigenvalue for
P(z) associated with a canonical set of Jordan chains of length £y, ... L then

x3 is an eigenvalue for M(z) and its Jordan structure is the union of the Jordan

structures of P(x) at xyg and at —xg.
Moreover:

1. concerning eigenvectors associated with any finite nonzero eigenvalue x,
P(z0)vo = 0 and P(—z¢)wo = 0 if and only if vi = (zovd,vd)T and
wy = (—xowd ,wd)T are two linearly independent eigenvectors such that
M (z3)vy = 0= M(2)w:;

2. M(2) is a 2n x 2n matriz polynomial of degree deg M = [(k + 1)/2];

3. writing M (z) = Z?igoM M;z7, the relation M; = (PI:;L Pfﬁgl) holds for
all 0 < j < degM, where P; =0 if j <0 orj>k;

4. if k is odd, M(2) has at least n (respectively, n+1) eigenvalues at infinity
if n is even (respectively, odd).

The proof can be obtained by adapting the arguments used in [13] for T-
palindromic polynomials to the even case; we skip the details here.

Similar results can of course be obtained for odd and Hamiltonian/skew-
Hamiltonian matrix polynomials. Applying the EAI to M (z) allows us to extract
the structure. An alternative approach, that avoids possible issues about loss
of accuracy for very large eigenvalues (this time M (z) has extra infinite eigen-
values only if k is odd), is once again the implicit use of the squaring transfor-
mation. Namely, if nk is even (which is always satisfied for Hamiltonian/skew-
Hamiltonian polynomials), then defining z := 2% one finds that ¢(z) := p(z(z)) is
a polynomial for z(z) = \/z or z(z) = —v/z. Thus, p'(z)/(2zp(z)) = ¢'(2)/q(z),
so that the Newton correction for the polynomial ¢(z) is readily available

9(2)/q (2) = 2ap(x) /v (x) = 22/tx(P(2) "' P'(x))

and the Ehrlich-Aberth algorithm can be implicitly applied to the polynomial
q(z) in order to compute its roots z1, ..., Znks2- This way, the roots of p(x) are
readily available in pairs as (\/z;, —/Zi)-
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In other situations, one eigenvalue is necessarily either 0 (if P(x) is odd
and nk is odd) or oo (if P(z) is even and nk is odd); thus, there is no need
to approximate it. It may also happen that there is one uncoupled eigenvalue
at 0 and another one at co (e.g. if P(x) is odd, n is odd and k is even).
In the case of an extra eigenvalue at 0, to approximate the other eigenvalues
one can notice that ¢(z) := p(y/z)/+/z is a polynomial and that ¢'(z)/q(z) =
(1/222)(xp'(x)/p(x) — 1). This yields the Newton correction for ¢(z) as

0(2)/q'(z) = 22/ (' () /p(z) — 1/2) = 22/ (tx(P(x) "' P'(2)) = 1/2), 2 =27,

which enables one to apply the EAI to ¢(z) by using an approximation vector
of length (nk — 1)/2. As in the palindromic case, there is also the alternative
option to consider the polynomial xP(z) which is even (odd) if P(z) is odd
(even). The new polynomial xP(z) has n additional eigenvalues at 0 that are
known and can therefore be immediately deflated.

8.4. Unified approach to any structure

More in general, let C* := CU {oco} and let f : C* — C* be any self-inverse
function, that is f(f(z)) = ¢ Vz € C*. An example is the subclass of rational
functions f(z) = %fab, which are self-inverse whenever a? + bec # 0. If we
additionally require f to be analytic, having such a form is not only a sufficient
condition, but it is also necessary (unless f(z) = x) for f to be self-inverse. This
follows from the fact that Mobius functions (i.e., rational functions of degree 1)
are the only automorphisms of C*.

Suppose that, because of some structure in the coefficients of P(z), all eigen-
values come in pairs {)\, f(A\)}. Eigenvalues such that A = f(\) are called ez-
ceptional, and are allowed to appear with any multiplicity.

Such a possibility justifies the requirements that

1. f(x) is analytic, so that either it is the identity function or it has a finite
number of fixed points, and

2. there is a way to identify which exceptional eigenvalues, if any, appear
with odd multiplicity.

In fact, exceptional eigenvalues can otherwise become a problem. For instance,
consider a real matrix polynomial associated to the non-analytic function f(x) =
x*: the method meets problems in this case. The reason is that, since all the
real line is exceptional, there is no way to state a priori which exceptional
(i.e. real) eigenvalues, if any, appear without being part of a complex conjugate
eigencouple.

If f is analytic, the implicit change of variable method that we have described

for the special cases f(x) = —z and f(z) = 1/x can be generalised in the
following way. Suppose first that a # 0, and define z(z) := af;—fzm =zf(x). Let

x(z) denote any of the two branches of the inverse function of z(z). Then if there
p(z(2))

(cx(z)—a)nk/2
a polynomial; therefore, the EAT can be applied to ¢(z) and the eigenvalues can
be found inverting the rational function z(x). Otherwise (e.g. if nk is odd) there

are no eigenvalues with odd multiplicity one can see that ¢(z) := is
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must be some exceptional eigenvalues that can be treated with techniques akin

to those described for the special cases previously considered. If on the contrary
2

a=0,let z(z) := <+ = 7+ f(z). Once again if all the eigenvalues come out in

. p(2)

T x(z)nk/2
the exceptional eigenx(fa)lues with known odd multiplicity by using techniques
analogous to those described in the previous subsections. Notice that the fixed
points of f(z) may lead to computational problems, since they are double roots
in the equation z(z) = ¢. Refinements of some kind are advisable there. See
also [14].

The explicit method may also be extended to the general case. This is the
subject of a future research project.

couples then ¢(z) is a polynomial; otherwise one can simply deal with

4. Numerical experiments

We have performed extensive numerical experiments in order to check the
efficiency and the accuracy of our implementation of the EAI Further tests have
been performed to confirm the ability of our method to exploit structures in the
coeflicients and to respect structures in the spectrum when approximating it.

4.1. Efficiency

The complexity of the proposed algorithm is of order tn® + tkn?, where t is
the total number of times that a trace computation is needed before (vectorial)
convergence. There is empirical evidence that ¢ heavily depends on the choice of
the initial approximation. For the case of scalar polynomials, the use of suitable
strategies |3, 4] leads to a linear dependence of t with respect to the total number
of roots.

Experiments we made with our implementation, with starting points deter-
mined by the Newton polygonal, suggest that this is also the case of the EAI
applied to a matrix polynomial. This means that the computational complexity
of the EAI is O(kn* + k%*n?), leading to great computational advantages for
k > y/n. As noticed in [Z0 if on the contrary k < y/n other more focused
implementation of the EAI are possible, with cubic efficiency in kn.

In order to confirm such predictions, we have compared our implementa-
tion of the EAT and MatlaHT's QZ implementation polyeig on random matrix
polynomials of high degree and small dimension. The experiments have been
performed on a machine with CPU Intel Xeon 2.80GHz and system Linux De-
bian 6.02. For very large values of k, we did not actually run polyeig due to the
very large forecast computation times, but we extrapolated the times from the
other experiments; in fact, when doubling the value of k we can expect that the
running time of the QZ algorithm grows approximately with a factor 8. Such
extrapolated values are marked with a * in the following tables.

IMatlab is a registered trademark of The MathWorks, Inc.
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Computation times for n =5
Computation times for n = 2 k EAI polyeig
k EAI polyeig 20 | 0.062 s 0.010 s
50 | 0.018 s 0.015 s 40 | 0.121 s 0.057 s
100 | 0.044 s 0.064 s 80 | 0.312s 0.370 s
200 | 0.111s 0.369 s 160 | 0.920 s 4.39 s
400 | 0.360 s 4.35 s 320 | 2.92s 44.0 s
800 | 1.29s 51.9 s 640 | 103 s 398 s
1600 | 4.76 s 437 s 1280 | 38.1s | O(50 min)*
3200 | 18.4s | O(50 min)* || 2560 | 148 s | O(7 hours)*
5120 | 575s O(2 days)*

The values in the tables above are in agreement with our prediction that the
computation time should asymptotically grow as k2. Moreover, the experimen-
tation also confirms that, for a given value of n, the ratio of the time needed by
EAT with respect to the time needed by the QZ algorithm exhibits an asymptotic
growth that is approximately linear in k. This effect is taken to the extreme in
the case n = 5, k = 5120. Had we used Matlab’s polyeig, it would have taken
several days of computation time on our machine to solve such a problem. Our
implementation of the EAI gave the approximated eigenvalues in less than 10
minutes.

4.2. Accuracy

In order to test the accuracy of our implementation we used the Matlab
toolbox NLEVP|2]. This toolbox has been recently proposed by its authors as
an interesting set of benchmark problems that may be used as a standard test
for new methods for nonlinear eigenvalue problems. It contains data coming
from practical applications as well as model problems known to have peculiar
properties.

Amongst the many nonlinear eigenproblems contained in NLEVP, we have
selected all the square polynomial eigenproblems with n < 25k2. We discarded
PEPs with a larger ratio n/k? because they could be better dealt with by a
different implentation of EAI, via a preliminary linearization. The test suite
selected with this criterion consists of 29 problems plus the 2 problems butterfly
and wiresaw] that, being structured, will be treated in the next subsection.

In all the parameter-dependent problems in the library the default values of
the parameters were selected. All methods were directly applied to the original
matrices as saved in the library, without preprocessing them with any scaling.
Forward errors are evaluated by comparing the approximations with either theo-
retically known values, when available, or values computed in variable precision
arithmetic (VPA) with Matlab’s symbolic toolbox.

The graphs below are in logarithmic scale. Whenever the absolute error for
a certain eigenvalue A appeared to be numerically zero, i.e. it was less than A
times the machine epsilon € = 2752 ~ 2.22e — 16, we formally set it equal to
%. Only absolute errors for the finite eigenvalues are shown in the figures.
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For the 3 problems with & > 3, the eigenvalue forward errors where computed
for both the EAI and the QZ method (as implemented in polyeig). Absolute
errors for our implementation of the EAT are marked with a red * symbol, while
absolute errors for polyeig are marked with a blue 4+ symbol. For this set of
experiments, we picked starting points on the unit circle. In our experience the
order of magnitude of the forward error is not significantly affected by the choice
of the starting points, even though for some problems other choices led to slight
improvements (not discussed here).

Fig. 2. Forward absolute errors for the problem plasma drift
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Fig. 3. Forward absolute errors for the problem relative pose dpt

For the 26 problems with £ = 2, three methods were compared by computing
their forward errors with the same method as above: polyeig (blue + symbol),
EAT (red * symbol) and the software quadeig by Hammarling, Munro and Tis-
seur [16], specifically designed for quadratic PEPs (black x symbol). Although
we did not alter the coefficients given as input to any method, for most problems
quadeig have performed scaling by the default settings of its internal algorithm,
that prescribe scaling under certain conditions; see [16].

Fig. 4. Forward absolute errors for the problems acoustic wave 1d (left) and
acoustic wave 2d (right)

Fig. 5. Forward absolute errors for the problems bicycle (left) and bilby (right)
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i

Fig. 6. Forward absolute errors for the problems cd player (left) and closed

loop (right)

Fig. 7. Forward absolute errors for the problems dirac (left) and gen hyper 2

(right)

Fig. 8. Forward absolute errors for the problems hospital (left) and
intersection (right)
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Fig. 9. Forward absolute errors for the problems metal strip (left) and mobile
manipulator (right)

Fig. 10. Forward absolute errors for the problems omnicaml (left) and
omnicam?2 (right)

Fig. 11. Forward absolute errors for the problems power plant (left) and qepl
(right)
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Fig. 12. Forward absolute errors for the problems qep2 (left) and qep3 (right)

Fig. 13. Forward absolute errors for the problems relative pose 6pt (left) and
signl (right)

Fig. 14. Forward absolute errors for the problems sign2 (left) and sleeper
(right)
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Fig. 15. Forward absolute errors for the problems spring (left) and spring
dashpot (right)

Fig. 16. Forward absolute errors for the problems wing (left) and wiresaw?2
(right)

As can be seen by the figures above, the approximations of the EAI are
competitive, and often more accurate than the approximations of the QZ. In
some cases, the improvement is remarkable. We report in the following table
the maximal relative error and the average relative error for all the finite (i.e.
neither numerically zero nor numerically infinite) eigenvalues of the 29 consid-
ered problems, and for both the EAI and the QZ. The average relative error is
defined as the geometric mean of all relative errors; numerically zero relative
errors have been counted as relative errors equal to €/2. The values reported
for the QZ for quadratic problems correspond to the algorithm, picked between
polyeig and quadeig, that achieved the best performance in terms of average
relative error for the given problem. As can be deduced by the above pictures
and coherently with the results on backward errors presented in [16], such best
performance was achieved generally, but not always, by the latter algorithm.
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Problem Rel. errors, EAI Rel. errors, QZ
Max. Avg. Max. Avg.
acoustic wave 1d 1.0e-14 | 2.1e-16 | 1.1e-14 | 1.7e-15
acoustic wave 2d €/2 €/2 3.2e-15 | 7.4e-16
bicycle 1.0e-15 | 4.0e-16 | 7.6e-15 | 1.1e-15
bilby 2.4e-14 | 3.5e-16 | 5.1e-15 | 1.8e-15
cd player 5.3e-16 | 1.2e-16 | 4.0e-14 | 3.3e-16
closed loop €/2 €/2 3.4e-16 | 1.5e-16
dirac 4.1e-14 | 5.9e-15 | 1.9e-13 | 2.9e-14
gen hyper 2 2.5e-14 | 9.3e-16 | 2.4e-15 | 4.9e-16
hospital 2.7e-15 | 1.6e-16 | 2.0e-14 | 1.4e-15
intersection 48 €9 | 4.5e-13 1.0 2.4e-8
metal strip 6.3e-16 | 1.7e-16 | 2.3e-15 | 6.7e-16
mobile manipulator €/2 €/2 5.1e-16 | 5.1e-16
omnicaml 9.1e-11 | 1.2e-12 | 4.3e-9 | 6.4e-13
omnicam?2 3.9e-10 | 2.3e-15 | 4.0e-9 | 1.2e-13
orr sommerfeld 5.0e-12 | 9.1e-16 | 4.8e-5 | 2.8e-9
plasma drift 3.4e-13 | 5.1e-16 | 1.3e-11 | 4.7e-14
power plant 8.3e-14 | 1.1le-15 | 6.1e-11 | 1.9e-13
qepl 8.9e-16 | 1.7e-16 | 1.8e-15 | 5.1e-16
qep2 5.8¢-9 | 5.3e-11 | 2.2e-16 | 1.9e-16
qep3 3.9e-9 | 1.0e-14 | 8.0e-10 | 3.2e-14
relative pose 5pt 2.9e-14 | 6.8e-15 | 1.6e-14 | 6.3e-15
relative pose 6pt 7.5e-14 | 1.9e-14 | 1.2e-13 | 1.4e-14
signl 3.8¢-8 | 1.1e-10 | 5.0e-8 | 3.9e-10
sign2 4.5e-14 | 2.8e-15 | 3.1e-13 | 1.3e-14
sleeper 8.0e-16 | 2.8e-16 | 1.8e-15 | 5.6e-16
spring €/2 €/2 1.7e-15 | 3.5e-16
spring dashpot 5.6e-15 | 3.1e-16 | 2.8e-13 | 1.4e-14
wing €/2 €/2 1.2e-15 | 8.1e-16
wiresaw?2 €/2 €/2 2.4e-15 | 9.2e-16

As the results above show, the EAI was generally able to improve the accu-
racy of the approximations with respect to the QZ method. The only problems
where the EAT achieved an average performance worse than the QZ are QEP2
(loss accuracy on the multiple eigenvalue 1 with respect to quadeig; polyeig has
problems as well) and gen hyper 2.

The problems in NLEVP do not have high degree, so the condition k2 > n
is not met. Therefore, in contrast with the high degree case, for those problems
using the EAI as a primary algorithm does not bring advantages in term of
computation time; on the contrary the implementation discussed in this paper
is slower than QZ if n > k2. Also, in these cases a linearization-based version
of the EAI would be more efficient than the polynomial-based implementation
discussed in the present paper. However, it is worth noticing that the numerical
experiments showed that very often it improved the accuracy achieved by polyeig
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and/or quadeig; in many cases, the EAI is able to compute correctly all the digits
of the eigenvalue up to machine precision. This suggests that, when k% < n,
it is possible to use the EAI as a refinement algorithm in order to improve the
approximations obtained by the QZ. Using such values as starting points offers
of course a very good choice, lowering the number of overall scalar iteration
needed before convergence and therefore improving the efficiency of the EAI

4.3. Structured case

Discussions and analyses of the behaviour of different structured versions of
the EAT applied to structured PEPs have already appeared in [13] for palin-
dromic polynomials and in [36] for even/odd polynomials.

Here we further verify the reliability of our method with two tests. The first
test relies on the NLEVP problems butterfly and wiresawl, which are even [2].
The next figures compare four algorithms applied to these problems: polyeig’s
QZ (blue 4+ symbol), unstructured EAT (UEAI, red x symbol), the structured
matrix method URV applied to an even linearization [43] (black x symbol), and
a structured version of the EAI relying on the change of variable z = 2% method
(SEAI green o symbol).

Fig. 17. Forward absolute errors for the problem butterfly
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Fig. 18. Forward absolute errors for the problem wiresawl

It is clear from the figures above that for the problem butterfly the EAI
was more accurate than the two matrix methods, but structured methods did
not improve much the accuracy of each unstructured counterpart. This sug-
gests that for these matrix polynomials the unstructured condition numbers for
the eigenvalues are not much different from the structured condition numbers;
therefore, structured methods do not improve much the accuracy, even though
they improve the efficiency.

In the second test, a matrix polynomial W (z) with n = 2 and k = 10 was
built in such a way that its eigenvalues appear in couples of the form {\, % .
In order to devise a problem not too easy to solve numerically, the determinant
of the polynomial was designed to be Wilkinson-like: det(W (x)) = const.-0(x)-
6(£), f(z) ==- H;L(x — 7). The next figure shows the absolute errors of
the computed approximations with respect to the known exact eigenvalues for
three methods: QZ (polyeig, blue + symbol), UEAT (red * symbol) and SEAT

m2+m
r—1

relying on the change of variable z =
errors were formally set equal to €/2.

(green o symbol). Numerically zero
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Fig. 19. Forward absolute errors for the structured problem det W(xz) =0

The following table reports the relative errors of the three methods consid-
ered above for all the eigenvalues but 0 (all the three algorithms detected the
zero eigenvalue with an absolute error smaller than the machine epsilon). It
also reports the relative error for the Matlab’s function eig (without scaling)
applied to a suitable linearization, chosen according to the prescriptions of [1§].
Notice that here all the nonzero eigenvalues have modulus > 1, so the suggested
(near-to-optimal) linearization in the space DL according to [18] would in prin-
ciple be the pencil in DL corresponding to the ansatz vector e; (see [28] for
further details). Unluckily, since one eigenvalue is zero, that pencil is not a lin-
earization at all [28]. Following the suggestions on conditioning of [18] and the
theory on linearizations of |28], we have therefore taken the slightly perturbed
vector e; + 27 23e1g as an ansatz vector. The factor 2723 has been heuristically
chosen picking the integer @ < 52 that minimises the average relative error
when applying eig to the linearizations in DL associated to the ansatz vectors
e1 + 2 %p.
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Eigenvalue | R. e., polyeig | R. e., eig | R. e., UEAI | R. e., SEAI
-1 4.9¢e-9 €/2 €/2 €/2
11/9 4.5e-2 4.8e-8 3.5e-9 1.4e-13
5/4 8.1e-2 2.2e-7 1.1e-8 5.7e-13
9/7 8.9e-2 4.2e-7 4.0e-9 1.4e-12
4/3 1.1e-3 4.1e-7 1.1e-8 4.6e-12
7/5 9.9e-2 2.2e-7 7.1le-11 5.1e-12
3/2 8.9e-2 6.3 e-8 3.8e-10 2.5e-12
5/3 3.9e-2 8.9e-9 1.8e-10 1.1e-12
2 1.0e-10 4.9¢-10 8.8e-12 5.1e-14
2 7.3e-4 2.3e-12 6.7e-15 4.7e-14
3 4.3e-6 6.3e-12 2.2e-14 6.3e-14

3 6.5e-8 5.8e-12 1.5e-13 6.7e-14
4 9.6e-8 1.5e-10 1.7e-12 2.0e-12
5 1.3e-7 8.1e-10 2.9e-12 5.9e-12
6 3.2e-7 2.2e-9 6.1e-12 1.5e-11
7 3.1e-6 3.3¢-9 1.5 e-11 1.6e-11
8 4.6e-6 2.7e-9 1.5e-11 5.5e-12
9 2.9¢-6 1.1e-9 1.7e-12 2.5e-12
10 4.2e-6 1.7e-10 3.0e-12 6.9e-13
Average 3.8e-5 9.6e-10 5.5e-12 4.1e-13

We may conclude that on this structured problem the EAI outperforms the
QZ method for what concerns accuracy. Apparently polyeig struggles quite a bit
here (which is coherent with the results of [18]), while the strategy of [18] works
better, but still worse than the EAI. Although there are some approximations
that do not benefit from the use of the structured version of the Ehrlich-Aberth
algorithm, the SEAT has an overall advantage in accuracy over the UEAI, besides
the obvious efficiency advantage. The computation time for the SEAI was about
one third of the computation time for the UEALIL

5. Conclusions and lines of future research

We have proposed and tested a generalisation of the Ehrlich-Aberth method
to polynomial eigenvalue problems. Both theoretical arguments and numerical
experiments show that the Ehrlich-Aberth algorithm is more efficient than cus-
tomary method for high-degree PEPs, since its complexity is only quadratic in
k. Numerical experiments also suggest that in many situations the new method
provides more accurate approximations, and therefore it may also be used as a
refinement method for low-degree PEPs.

On the other hand, problems arise in the treatment of multiple eigenvalues.
Current research is focused on this issue. Currently, our algorithm exploits a
heuristic device to deal with multiple eigenvalues at 0 or co, which is the most
common occurrence in practice. For the NLEVP problems, very good results
were obtained also when multiple eigenvalues were present.
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Another line of current research regards the possible use of other root-finding
algorithms. For instance, we can cite the modified Ehrlich-Aberth iteration
[29,138], the Durand-Kerner iteration |29, 40] or simultaneous root finders based
on higher order methods in the Householder family, e.g. the Halley method [40)].
It is advocated [29, 40] that some of the above mentioned method have order
of convergence higher than 3. However, in practice we did not see a significant
improvement on the total number of scalar iterations with respect to the EAI,
sometimes, performances were definitely worse than the EAI. Further work is
needed to compare the various possibilities in special cases like structured matrix
polynomials.

Important issues on which we plan to keep on working are improving the
design of reliable stop conditions, a posteriori error bounds and choices of start-
ing approximations. About the latter issue, in [6] some results of [44] on scalar
polynomials will be generalised to matrix polynomials.

Finally, we have proposed and tested a structured version of the algorithm
that is able to catch certain structures in the spectrum. New numerical ex-
periments on the matter confirm and extend the results of |13, 136] about the
efficiency and the accuracy of the structured EAT.

6. Acknowledgements

The second author wishes to thank Federico Poloni who provided some help
by delivering the eigenvalues computed by Matlab in VPA for some of the
NLEVP problems.

References

[1] O. Aberth. Iteration methods for finding all zeros of a polynomial simulta-
neously. Math. Comput, 27:339-344, 1973.

[2] T. Betcke, N. J. Higham, V. Mehrmann, C. Schroder and F. Tis-
seur. NLEVP: A Collection of Nonlinear FEigenvalue Problems.
MIMS EPrint 2010.98, 2010. Avaliable online on the webpage
http://www.mims.manchester.ac.uk /research/numerical-analysis/nlevp.html

[3] D. A. Bini. Numerical computation of polynomial zeros by means of
Aberths method. Numer. Algorithms, 13:179200, 1996.

[4] D. A. Bini and G. Fiorentino. Design, analysis, and implementation of a
multiprecision polynomial rootfinder. Numer. Algorithms, 23(2-3):127-173,
2000.

[5] D. A. Bini, L. Gemignani and F. Tisseur. The Ehrlich-Aberth method for
the nonsymmetric tridiagonal eigenvalue problem. SIAM J. Matriz Anal.
Appl., 27(1):153-175, 2005.

[6] D. A. Bini, V. Noferini and M. Sharify. On some polynomial eigenvalue
location theorems. In preparation.

30


http://www.mims.manchester.ac.uk/research/numerical-analysis/nlevp.html

[7] W. Borsch-Supan. A Posteriori Error Bounds for the Zeros of Polynomials.
Numer. Math., 5:380-398 (1963).

[8] R. P. Boyer and W. M. Y. Goh. Partition polynomials: asymptotics and
zeros. Tapas in experimental mathematics, 99111, Contemp. Math., 457,
Amer. Math. Soc., Providence, RI, 2008.

[9] L. W. Ehrlich. A modified Newton method for polynomials, Comm. ACM,
10(2):107-108, 1967.

[10] H. FaBbender. Symplectic methods for the symplectic eigenproblem. Kluwer,
New York, 2002.

[11] H. FaBbender, D. S. Mackey, N. Mackey and H. Xu. Hamiltonian Square
Roots of Skew-Hamiltonian Matrices. Linear Algebra Appl., 287:125-159,
1999.

[12] W. Gander. Zeros of determinants of A-matrices. In Vadim Olshevsky and
Eugene Tyrtyshnikov, editors, Matriz methods: theory, algorithms and ap-
plications, Dedicated to the memory of G. Golub. World Scientific Publisher,
2010.

[13] L. Gemignani and V. Noferini. The Ehrlich-Aberth method for palindromic
matrix polynomials represented in the Dickson basis. Linear Algebra Appl.
2011, doi: 10.1016/j.1aa.2011.10.035

[14] L. Gemignani and V. Noferini. Modifications of Newton’s method for even-
grade palindromic polynomials and other twined polynomials. Submitted.

[15] H. Guggenheimer. Initial approximations in Durand-Kerner’s root finding
method. BIT 26:537-539.

[16] S. Hammarling, C. Munro and F. Tisseur. An Algorithm for the Com-
plete Solution of Quadratic Eigenvalue Problems. MIMS EPrint 2011.86,
avaliable online.

[17] P. Henrici. Applied and computational complex analysis. Vol. 1. Wiley-
Interscience [John Wiley & Sons], New York-London-Sydney, 1974

[18] N. J. Higham, D. S. Mackey and F. Tisseur. The conditioning of lineariza-
tions of matrix polynomials. STAM J. Matriz Anal. Appl., 28(4):1005-1028,
2006.

[19] N. K. Jain and K. Singhal. On Kublanovskayas approach to the solution
of the generalized latent value problem for functional A-matrices. SIAM J.
Matriz Anal. Appl., 20(5) :1062-1070, 1983.

[20] N. K. Jain, K. Singhal and K. Huseyin. On roots of functional lambda
matrices. Comput. Meth. Appl. Mech. Engrg., 40:277-292, 1983.

31



[21]

(28]

29]

[30]

31]

32]

33]

[34]

V. Kublanovskaya. On an approach to the solution of the generalized latent
value problem for A-matrices. SIAM J. Matrix Anal. Appl., 7 :532-537,
1970.

P. Lancaster. Lambda-matrices and vibrating structures. Pergamon Press,

Oxford, 1966.

P. Lancaster, U. Prells and L. Rodman. Canonical structures for palin-
dromic matrix polynomials. Oper. Matrices, 1:469-489, 2007.

P. Lancaster and L. Rodman. Canonical forms for symmetric/skew-
symmetric real matrix pairs under strict equivalence and congruence. Lin-
ear Algebra Appl., 406:1-76, 2005.

D. S. Mackey, N. Mackey, C. Mehl and V. Mehrmann. Numerical methods
for palindromic eigenvalue problems: Computing the anti-triangular schur
form. Numerical Linear Algebra with Appl., 16:63-86, 2009.

D. S. Mackey, N. Mackey, C. Mehl and V. Mehrmann. Smith forms of
palindromic matrix polynomials. FElectron. J. Linear Algebra, 22, 53-91,
2011.

D. S. Mackey, N. Mackey, C. Mehl and V. Mehrmann. Structured polyno-
mial eigenvalue problems: good vibrations from good linearizations. SIAM
J. Matriz Anal. Appl., 28(4):1029-1051 (electronic), 2006.

D. S. Mackey, N. Mackey, C. Mehl and V. Mehrmann. Vector Spaces
of Linearizations for Matrix Polynomials. SIAM J. Matriz Anal. Appl.,
28(4):971-1004 (electronic), 2006.

J. M. MacNamee. Numerical Methods for Roots of Polynomials. Studies in
Computational Mathematics, 14, Elsevier (2007).

H. Mahley. Zur Iterativen Auflésung Algebraisher Gleichungen. Z. Angew.
Math. Physik 5:260-263, 1954.

C. Mehl. Condensed forms for skew-Hamiltonian/Hamiltonian pencils.
SIAM J. Matrixz Anal. Appl., 21:454-476, 1999.

V. Mehrmann and D. Watkins. Structure-preserving Methods for Com-
puting Eigenpairs of Large Sparse Skew-Hamiltonian/Hamiltonian Pencils.
SIAM J. Sci. Comp., 22:1905-1925, 2001.

V. Mehrmann and D. Watkins. Polynomial eigenvalue problems with
Hamiltonian structure. Electr. Trans. Num. Anal., 13:106-113, 2002

Y. Monden and S. Arimoto. Generalized Rouche’s theorem and its applica-

tions to multivariate autoregressions. IEEE Trans. Acoust., Speech, Signal
Processing, ASSP-28:733-738, 1980.

32



[35] T. Muir. A Treatise on the Theory of Determinants. Macmillan and Co.,
1882.

. Noferini. e application of the rlich-Aberth method to structure

36] V. Noferini. Th licati f the Ehrlich-Aberth hod d
polynomial eigenvalue problems. Proc. Appl. Math. Mech., 11:919-922,
2011.

[37] V. Noferini. The behaviour of the complete eigenstructure of a polynomial
matrix under a generic rational transformation. Submitted.

[38] A.-W. M. Nourein. An iterative formula for the simultaneous determination
of the zeros of a polynomial. J. Comput. Appl. Math., 1(4): 251-254, 1975.

[39] N. Papathanasiou and P. Psarrakos. On condition numbers of polynomial
eigenvalue problems. Appl. Math. Comput., 216(4):1194-1205, 2010.

[40] M. Petkovic. Point Estimation of Root Finding Methods. Lecture Notes in
Mathematics, 1933. Springer-Verlag, Berlin Heidelberg, 2008.

[41] B. Plestenjak. Numerical method for the tridiagonal hyperbolic quadratic
eigenvalue problem. STAM J. Matriz Anal. Appl., 28(4):1157-1172, 2006

[42] A. Ruhe. Algorithms for the nonlinear eigenvalue problem. STAM J. Numer.
Anal., 10:674-689, 1973.

[43] C. Schréder. Palindromic and Even Eigenvalue Problems - Analysis and Nu-
merical Methods. PhD thesis, Technischen Universitat Berlin, April 2008.

[44] M. Sharify. Scaling Algorithms and Tropical Methods in Numerical Ma-
trix Analysis: Application to the Optimal Assignment Problem and to the
Accurate Computation of Eigenvalues. Ph.D. Thesis, Ecéle Polytechnique
ParisTech, Spécialité: Mathématiques Appliquées.

[45] B. T. Smith. Error bounds for zeros of a polynomial based upon Ger-
schgorin’s theorems. JACM, 17:661-674, 1970.

[46] F. Tisseur. Backward Error and Condition of Polynomial Eigenvalue Prob-
lems. Linear Algebra Appl., 309(1-3):339-361, 2000.

[47] F. Tisseur, and K. Meerbergen. The quadratic eigenvalue problem. SIAM
Rev., 43(2):235-286, 2001.

[48] C. Van Loan. A Symplectic Method for Approximating all the Eigenvalues
of a Hamiltonian Matrix. Linear Algebra Appl., 61:233-251, 1984.

[49] G. T. Wilson, The factorization of matricial spectral densities. STAM J.
Appl. Math., 23:420-426, 1972.

33



	1 Introduction
	2 The Ehrlich-Aberth method for matrix polynomials
	2.1 Computing the Newton correction
	2.2 Stopping criterion
	2.3 Choosing initial approximations
	2.4 A posteriori error bounds
	2.5 Multiple eigenvalues
	2.6 Linearization as a possibility

	3 The case of structured polynomials
	3.1 Skew-Hamiltonian and even-dimensional skew-symmetric
	3.2 Palindromic and symplectic
	3.3 Hamiltonian/skew-Hamiltonian and even/odd
	3.4 Unified approach to any structure

	4 Numerical experiments
	4.1 Efficiency
	4.2 Accuracy
	4.3 Structured case

	5 Conclusions and lines of future research
	6 Acknowledgements

