
Chapter 3

Newton methods

3.1 Linear and nonlinear eigenvalue problems

In linear eigenvalue problems we have to find values λ ∈ C such that λI −A is singular.
Here A ∈ F

n×n is a given real or complex matrix. Equivalently, we have to find values
λ ∈ C such that there is a nontrivial (nonzero) x that satisfies

(3.1) (A− λI)x = 0 ⇐⇒ Ax = λx.

In the linear eigenvalue problem (3.1) the eigenvalue λ appears linearly. However, as the
unknown λ is multiplied with the unknown vector x, the problem is in fact nonlinear. We
have n+1 unknowns λ, x1, . . . , xn that are not uniquely defined by the n equations in (3.1).
We have noticed earlier, that the length of the eigenvector x is not determined. This can
be rectified by adding a further equation that fixes the length of x. The straightforward
condition is

(3.2) ‖x‖2 = x∗x = 1,

that determines x up to a complex scalar of modulus 1, in the real case ±1. Another
condition to normalize x is by requesting that

(3.3) cTx = 1, for some c.

Eq. (3.3) is linear in x and thus simpler. However, the combined equations (3.1)–(3.3) are
nonlinear anyway. Furthermore, c must be chosen such that it has a strong component in
the (unknown) direction of the searched eigenvector. This requires some knowledge about
the solution.

In nonlinear eigenvalue problems we have to find values λ ∈ C such that

(3.4) A(λ)x = 0

where A(λ) is a matrix the elements of which depend on λ in a nonlinear way. An example
is a matrix polynomial,

(3.5) A(λ) =

d∑

k=0

λkAk, Ak ∈ F
n×n.

The linear eigenvalue problem (3.1) is a special case with d = 1,

A(λ) = A0 − λA1, A0 = A, A1 = I.

53



54 CHAPTER 3. NEWTON METHODS

Quadratic eigenvalue problems of the form

(3.6) Ax+ λKx+ λ2Mx = 0.

Matrix polynomials can be linearized, i.e., they can be transformed in a linear eigenvalue
of bigger size. The quadratic eigenvalue problem (3.6) can be transformed in a linear
eigenvalue problem of size 2n. Setting y = λx we get

(
A O
O I

)(
x
y

)
= λ

(
−K −M
I O

)(
x
y

)

or (
A K
O I

)(
x
y

)
= λ

(
O −M
I O

)(
x
y

)
.

Notice that many other linearizations are possible [2, 6]. Notice also the relation with the
transformation of high order to first order ODE’s [5, p. 478].

Instead of looking at the nonlinear system (3.1) (complemented with (3.3) or (3.2)) we
may look at the nonlinear scalar equation

(3.7) f(λ) := det A(λ) = 0

and apply some zero finder. Here the question arises how to compute f(λ) and in particular
f ′(λ) = d

dλ det A(λ).

3.2 Zeros of the determinant

We first consider the computation of eigenvalues and subsequently eigenvectors by means
of computing zeros of the determinant det(A(λ)).

Gaussian elimination with partial pivoting (GEPP) applied to A(λ) provides the de-
composition

(3.8) P (λ)A(λ) = L(λ)U(λ),

where P (λ) is the permutation matrix due to partial pivoting, L(λ) is a lower unit trian-
gular matrix, and U(λ) is an upper triangular matrix. From well-known properties of the
determinant function, equation (3.8) gives

detP (λ) · detA(λ) = detL(λ) · detU(λ).

Taking the particular structures of the factors in (3.8) into account, we get

(3.9) f(λ) = detA(λ) = ±1 ·
n∏

i=1

uii(λ).

The derivative of detA(λ) is

(3.10)

f ′(λ) = ±1 ·
n∑

i=1

u′ii(λ)
n∏

j 6=i
ujj(λ)

= ±1 ·
n∑

i=1

u′ii(λ)
uii(λ)

n∏

j=1

ujj(λ) =
n∑

i=1

u′ii(λ)
uii(λ)

f(λ).

How can we compute the derivatives u′ii of the diagonal elements of U(λ)?



3.2. ZEROS OF THE DETERMINANT 55

3.2.1 Algorithmic differentiation

A clever way to compute derivatives of a function is by algorithmic differentiation, see
e.g., [1]. Here we assume that we have an algorithm available that computes the value
f(λ) of a function f , given the input argument λ. By algorithmic differentiation a new
algorithm is obtained that computes besides f(λ) the derivative f ′(λ).

The idea is easily explained by means of the Horner scheme to evaluate polynomials.
Let

f(z) =

n∑

i=1

ciz
i.

be a polynomial of degree n. f(z) can be written in the form

f(z) = c0 + z (c1 + z (c2 + · · · + z (cn) · · · ))

which gives rise to the recurrence

pn := cn,

pi := z pi+1 + ci, i = n− 1, n − 2, . . . , 0,

f(z) := p0.

Note that each of the pi can be considered as a function (polynomial) in z. We use the
above recurrence to determine the derivatives dpi,

dpn := 0, pn := cn,

dpi := pi+1 + z dpi+1, pi := z pi+1 + ci, i = n−1, n−2, . . . , 0,

f ′(z) := dp0, f(z) := p0.

We can proceed in a similar fashion for computing detA(λ). We however need to be able
to compute the derivatives a′ij . Then, we can derive each single assignment in the GEPP
algorithm.

If we restrict ourselves to the standard eigenvalue problem Ax = λx then A(λ) =
A− λI. Then, a′ij = δij , the Kronecker δ.

3.2.2 Hyman’s algorithm

In a Newton iteration we have to compute the determinant for possibly many values λ.
Using the factorization (3.8) leads to computational costs of 2

3n
3 flops (floating point

operations) for each factorization, i.e., per iteration step. If this algorithm was used to
compute all eigenvalues then an excessive amount of flops would be required. Can we do
better?

The strategy is to transform A by a similarity transformation to a Hessenberg ma-
trix, i.e., a matrix H whose entries below the lower off-diagonal are zero,

hij = 0, i > j + 1.

Any matrix A can be transformed into a similar Hessenberg matrix H by means of a
sequence of elementary unitary matrices called Householder transformations. The
details are given in Section 4.3.
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Let S∗AS = H, where S is unitary. S is the product of the just mentioned Householder
transformations. Then

Ax = λx ⇐⇒ Hy = λy, x = Sy.

So, A and H have equal eigenvalues (A and H are similar) and the eigenvectors are
transformed by S. We now assume that H is unreduced, i.e., hi+1,i 6= 0 for all i.
Otherwise we can split Hx = λx in smaller problems.

Let λ be an eigenvalue of H and

(3.11) (H − λI)x = 0,

i.e., x is an eigenvector of H associated with the eigenvalue λ. Then the last component
of x cannot be zero, xn 6= 0. The proof is by contradiction. Let xn = 0. Then (for n = 4)




h11 − λ h12 h13 h14
h21 h22 − λ h23 h24

h32 h33 − λ h34
h43 h44 − λ







x1
x2
x3
0


 =




0
0
0
0


 .

The last equation reads

hn,n−1xn−1 + (hnn − λ) · 0 = 0

from which xn−1 = 0 follows since we assumed hn,n−1 6= 0. In the exact same procedure
we obtain xn−2 = 0, . . . , x1 = 0. But the zero vector cannot be an eigenvector. Therefore,
xn must not be zero. Without loss of generality we can set xn = 1.

We continue to expose the procedure with a problem size n = 4. If λ is an eigenvalue
then there are xi, 1 ≤ i < n, such that

(3.12)




h11 − λ h12 h13 h14
h21 h22 − λ h23 h24

h32 h33 − λ h34
h43 h44 − λ







x1
x2
x3
1


 =




0
0
0
0


 .

If λ is not an eigenvalue then we determine the xi such that

(3.13)




h11 − λ h12 h13 h14
h21 h22 − λ h23 h24

h32 h33 − λ h34
h43 h44 − λ







x1
x2
x3
1


 =




p(λ)
0
0
0


 .

We determine the n− 1 numbers xn−1, xn−2, . . . , x1 by

xi =
−1
hi+1,i

(
(hi+1,i+1 − λ)xi+1 + hi+1,i+2 xi+2 + · · ·+ hi+1,n xn︸︷︷︸

1

)
, i = n− 1, . . . , 1.

The xi are functions of λ, in fact, xi ∈ Pn−i. The first equation in (3.13) gives

(3.14) (h1,1 − λ)x1 + h1,2 x2 + · · ·+ h1,n xn = p(λ).
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Eq. (3.13) can be understood by the factorization




h11 − λ h12 h13 h14
h21 h22 − λ h23 h24

h32 h33 − λ h34
h43 h44 − λ







1 x1
1 x2

1 x3
1




=




h11 − λ h12 h13 p(λ)
h21 h22 − λ h23 0

h32 h33 − λ 0
h43 0


 .

The last column of this equation corresponds to (3.13). Taking determinants yields

det(H − λI) = (−1)n−1

(
n−1∏

i=1

hi+1,i

)
p(λ) = c · p(λ).

So, p(λ) is a constant multiple of the determinant of H − λI. Therefore, we can solve
p(λ) = 0 instead of det(H − λI) = 0.

Since the quantities x1, x2, . . . , xn and thus p(λ) are differentiable functions of λ, we
can algorithmically differentiate to get p′(λ).

For i = n− 1, . . . , 1 we have

x′i =
−1
hi+1,i

(
− xi+1 + (hi+1,i+1 − λ)x′i+1 + hi+1,i+2 xi+2 + · · ·+ hi+1,n−1x

′
n−1

)
.

Finally,
c · f ′(λ) = −x1 + (h1,n − λ)x′1 + h1,2 x2 + · · ·+ h1,n−1x

′
n−1.

Algorithm 3.2.2 implements Hyman’s algorithm that returns p(λ) and p′(λ) given an input
parameter λ [7].

Algorithm 3.1 Hyman’s algorithm

1: Choose a value λ.
2: xn := 1; dxn := 0;
3: for i = n− 1 downto 1 do
4: s = (λ− hi+1,i+1)xi+1; ds = xi+1 + (λ− hi+1,i+1) dxi+1;
5: for j = i+ 1 to n do
6: s = s− hi+1,jxj; ds = ds− hi+1,jdxj;
7: end for
8: xi = s/hi+1,i; dxi = ds/hi+1,i;
9: end for

10: s = −(λ− h1,1)x1; ds = −(λ− h1,1)dx1 − x1;
11: for i = 2 to n do
12: s = s+ h1,ixi; ds = ds + h1,idxi;
13: end for
14: p(λ) := s; p′(λ) := ds;

This algorithm computes p(λ) = c′ ·det(H(λ)) and its derivative p′(λ) of a Hessenberg
matrixH inO(n2) operations. Inside a Newton iteration the new iterate would be obtained
by

λk+1 = λk −
p(λk)

p′(λk)
, k = 0, 1, . . .
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The factor c′ cancels. An initial guess λ0 has to be chosen to start the iteration. It is
clear that a good guess reduces the iteration count of the Newton method. The iteration
is considered converged if f(λk) ≈ 0. The vector x = (x1, x2, . . . , xn−1, 1)

T is a good
approximation of the corresponding eigenvector.
Remark 3.1. Higher order deriatives of f can be computed in an analogous fashion. Higher
order zero finders (e.g. Laguerre’s zero finder) are then applicable [3].

3.2.3 Computing multiple zeros

If we have found a zero z of f(x) = 0 and want to compute another one, we want to avoid
recomputing the already found z.

We can explicitly deflate the zero by defining a new function

(3.15) f1(x) :=
f(x)

x− z ,

and apply our method of choice to f1. This procedure can in particular be done with
polynomials. The coefficients of f1 are however very sensitive to inaccuracies in z. We
can proceed similarly for multiple zeros z1, . . . , zm. Explicit deflation is not recommended
and often not feasible since f is not given explicitely.

For the reciprocal Newton correction for f1 in (3.15) we get

f ′1(x)
f1(x)

=

f ′(x)
x−z −

f(x)
(x−z)2

f(x)
x−z

=
f ′(x)
f(x)

− 1

x− z .

Then a Newton correction becomes

(3.16) x(k+1) = xk −
1

f ′(xk)
f(xk)

− 1
xk − z

and similarly for multiple zeros z1, . . . , zm. Working with (3.16) is called implicit defla-
tion. Here, f is not modified. In this way errors in z are not propagated to f1

3.3 Newton methods for the constrained matrix problem

We consider the nonlinear eigenvalue problem (3.4) equipped with the normalization con-
dition (3.3),

(3.17)
T (λ)x = 0,

cTx = 1,

where c is some given vector. At a solution (x, λ), x 6= 0, T (λ) is singular. Note that x is
defined only up to a (nonzero) multiplicative factor. cTx = 1 is just a way to normalize
x. Another one would be ‖x‖2 = 1, cf. the next section.

Solving (3.17) is equivalent with finding a zero of the nonlinear function f(x, λ),

(3.18) f(x, λ) =

(
T (λ)x
cTx− 1

)
=

(
0
0

)
.

To apply Newton’s zero finding method we need the Jacobian of f ,

(3.19) J(x, λ) ≡ ∂f(x, λ)

∂(x, λ)
=

(
T (λ) T ′(λ)x
cT 0

)
.



3.3. NEWTON METHODS FOR THE CONSTRAINED MATRIX PROBLEM 59

Here, T ′(λ) denotes the (elementwise) derivative of T with respect to λ. Then, a step of
Newton’s iteration is given by

(3.20)

(
xk+1

λk+1

)
=

(
xk
λk

)
− J(xk, λk)−1f(xk, λk),

or, with the abbreviations Tk := T (λk) and T
′
k := T ′(λk),

(3.21)

(
Tk T ′

k xk
cT 0

)(
xk+1 − xk
λk+1 − λk

)
=

(
−Tk xk
1− cTxk

)
.

If xk is normalized, cTxk = 1, then the second equation in (3.21) yields

(3.22) cT (xk+1 − xk) = 0 ⇐⇒ cTxk+1 = 1.

The first equation in (3.21) gives

Tk (xk+1 − xk) + (λk+1 − λk)T ′
k xk = −Tk xk ⇐⇒ Tk xk+1 = −(λk+1 − λk)T ′

k xk.

We introduce the auxiliary vector uk+1 by

(3.23) Tk uk+1 = T ′
k xk.

Note that

(3.24) xk+1 = −(λk+1 − λk)uk+1.

So, uk+1 points in the desired direction; it just needs to be normalized. Premultiply-
ing (3.24) by cT and using (3.22) gives

1 = cTxk+1 = −(λk+1 − λk) cTuk+1,

or

(3.25) λk+1 = λk −
1

cTuk+1
.

In summary, we get the following procedure.

Algorithm 3.2 Newton iteration for solving (3.18)

1: Choose a starting vector x0 ∈ R
n with cTx0 = 1. Set k := 0.

2: repeat
3: Solve T (λk)uk+1 := T ′(λk)xk for uk+1; (3.23)
4: µk := cTuk+1;
5: xk+1 := uk+1/µk; (Normalize uk+1)
6: λk+1 := λk − 1/µk; (3.25)
7: k := k + 1;
8: until some convergence criterion is satisfied

If the linear eigenvalue problem is solved by Algorithm 3.3 then T ′(λ)x = x. In each
iteration step a linear system has to be solved which requires the factorization of a matrix.

We now change the way we normalize x. Problem (3.17) becomes

(3.26) T (λ)x = 0, ‖x‖2 = 1,
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with the corresponding nonlinear system of equations

(3.27) f(x, λ) =

(
T (λ)x

1
2(x

Tx− 1)

)
=

(
0
0

)
.

The Jacobian now is

(3.28) J(x, λ) ≡ ∂f(x, λ)

∂(x, λ)
=

(
T (λ) T ′(λ)x
xT 0

)
.

The Newton step (3.20) is changed into

(3.29)

(
Tk T ′

k xk
xTk 0

)(
xk+1 − xk
λk+1 − λk

)
=

(
−Tk xk

1
2(1− xTk xk)

)
.

If xk is normalized, ‖xk‖ = 1, then the second equation in (3.29) gives

(3.30) xTk (xk+1 − xk) = 0 ⇐⇒ xTk xk+1 = 1.

The correction ∆xk := xk+1 − xk is orthogonal to the actual approximation. The first
equation in (3.29) is the same as in (3.21). Again, we employ the auxiliary vector uk+1

defined in (3.23). Premultiplying (3.24) by xTk and using (3.30) gives

1 = xTk xk+1 = −(λk+1 − λk)xTk uk+1,

or

(3.31) λk+1 = λk −
1

xTk uk+1
.

The next iterate xk+1 is obtained by normalizing uk+1,

(3.32) xk+1 = uk+1/‖uk+1‖.

Algorithm 3.3 Newton iteration for solving (3.27)

1: Choose a starting vector x0 ∈ R
n with ‖x(0)‖ = 1. Set k := 0.

2: repeat
3: Solve T (λk)uk+1 := T ′(λk)xk for uk+1; (3.23)
4: µk := xTk uk+1;
5: λk+1 := λk − 1/µk; (3.31)
6: xk+1 := uk+1/‖uk+1‖; (Normalize uk+1)
7: k := k + 1;
8: until some convergence criterion is satisfied

3.4 Successive linear approximations

Ruhe [4] suggested the following method which is not derived as a Newton method. It is
based on an expansion of T (λ) at some approximate eigenvalue λk.

(3.33) T (λ)x ≈ (T (λk)− ϑT ′(λk))x = 0, λ = λk − ϑ.
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Algorithm 3.4 Algorithm of successive linear problems

1: Start with approximation λ1 of an eigenvalue of T (λ).
2: for k = 1, 2, . . . do
3: Solve the linear eigenvalue problem T (λ)u = ϑT ′(λ)u.
4: Choose an eigenvalue ϑ smallest in modulus.
5: λk+1 := λk − ϑ;
6: end for

Equation (3.33) is a generalized eigenvalue problem with eigenvalue ϑ. If λk is a good ap-
proximation of an eigenvalue, then it is straightforward to compute the smallest eigenvalue
ϑ of

(3.34) T (λk)x = ϑT ′(λk)x

and update λk by λk+1 = λk − ϑ.
Remark: If T is twice continuously differentiable, and λ is an eigenvalue of problem

(1) such that T ′(λ) is singular and 0 is an algebraically simple eigenvalue of T ′(λ)−1T (λ),
then the method in Algorithm 3.4 converges quadratically towards λ.
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