Chapter 10

Restarting Arnoldi and Lanczos
algorithms

The number of iteration steps can be very high with the Arnoldi or the Lanczos algorithm.
This number is, of course, not predictable. The iteration count depends on properties of
the matrix, in particular the distribution of its eigenvalues, but also on the initial vectors.

High iteration counts entail a large memory requirement to store the Arnoldi/Lanczos
vectors and a high amount of computation because of growing cost of the reorthogonal-
ization.

The idea behind the implicitely restarted Arnoldi (IRA) and implicitely restarted Lanc-
zos (IRL) algorithms is to reduce these costs by limiting the dimension of the search space.
This means that the iteration is stopped after a number of steps (which is bigger than
the number of desired eigenvalues), reduce the dimension of the search space without
destroying the Krylov space tructure, and finally resume the Arnoldi / Lanczos iteration.

The implicitely restarted Arnoldi has first been proposed by Sorensen [7, 8]. It is imple-
mented together with the implicitely restarted Lanczos algorithms in the software package
ARPACK [4]. The ARPACK routines are the basis for the sparse matrix eigensolver eigs
in MATLAB.

10.1 The m-step Arnoldi iteration

Algorithm 10.1 The m-step Arnoldi iteration
: Let A € F™*™. This algorithm executes m steps of the Arnoldi algorithm.
car=x/[x[; z=Aaq; o1=dqjz
ri=w-—oq; @Q1=[a]; Hi =[]
forj=1,...,m—1do
Bj = lcjlls aj+r =r3/B;;
H

6 Qjp1:=[Qjqjp]; Hj:= [ﬁjgr] € FU+)xj;
J

A A o

z := Aq;;
o h=0Q5h7 T =2 - Qb
9: Hj+1 = [Hj,h];
10: end for

We start with the Algorithm 10.1 that is a variant of the Arnoldi Algorithm 9.1. It

177

178 CHAPTER 10. RESTARTING ARNOLDI AND LANCZOS ALGORITHMS

executes just m Arnoldi iteration steps. We will now show how the dimension of the search
space is reduced withouth losing the information regarding the eigenvectors one is looking
for.

Remark 10.1. Step 8 in Algorithm 10.1 is classical Gram-Schmidt orthogonalization. As

rit1=2— Qjph=2-Q;11Qj 12,

we formally have Qj,rj4+1 = 0. However, classical Gram-Schmidt orthogonalization is
faster but not so accurate as modified Gram-Schmidt orthogonalization [1]. So, often,
Q; 41Tj+1 is quite large. Therefore, the orthogonalization is iterated to get sufficient or-
thogonality.

A possible modification of step 8 that incorporates a second iteration is

8: h:= Q;Hz; Tj41 (=2 — Qj+1h;
C = Q;+1rj+1; Tjy1 =541 — QJ'+1C; h=h+ C;

Now we have,

T'j41 = corrected rj41
=rjt1 — Qj+1 Qj41Tj+1
C
=2 - Qj4+1Qj112-Qj11Qj1rjt1 =2 — Qjta(h +¢)
\T/ h\(:’—/

More iterations are possible but seldom necessary. 0
After the execution of Algorithm 10.1 we have the Arnoldi / Lanczos relation

(10.1) AQm = QmHy +1he;,, H,.= [m]

available with
m = .qum+17 ||qm+1” =1

If B = 0 then R(Qy) is invariant under A, ie., Ax € R(Qn) for all x € R(Qm).
This lucky situation implies that o(H,,) C 0,,(A). So, the Ritz values and vectors are
eigenvalues and eigenvectors of A.

What we can realistically hope for is 3,, being small. Then,

AQm —rmey, = (A —rnal,)Qm = QmHn.

Then, R(Qr) is invariant under a matrix A+ E, that differs from A by a perturbation

E with |E|| = |ltm|| = |Bm|- From general eigenvalue theory we know that this in this

situation well-conditioned eigenvalues of H,, are good approximations of eigenvalues of A.
In the sequel we investigate how we can find a ¢; such that 3, becomes small?

10.2 Implicit restart

Let us start from the Arnoldi relation

(10.2) AQm = QmHpy, + rme;,,

10.2. IMPLICIT RESTART 179

Algorithm 10.2 k implicit QR steps applied to H,,
1z H,'; = Hpn.
2: fori:=1,...,k do
3 H:=V*HLV, where H, — ;I = V;R; (QR factorization)
4: end for

that is obtained after calling Algorithm 10.1.

We apply k& < m implicit QR steps to H,, with shifts u1,...,pr, see Algorithm 10.2.
Let V* := ViVa- .- Vi. V7 is the product of k (unitary) Hessenberg matrices whence it
has k nonzero off-diagonals below its main diagonal.

Vi=

m

>¢-{'

We define
Q,‘; =Q,Vt, H; = (VY)*H, V.

Then, from (10.2) we obtain

AQmV™t = QuVT (V) Hp VY +rpel, VT,
or
(10.3) AQH = QY HY +ryel V.

As V* has k nonzero off-diagonals below the main diagonal, the last row of V1 has the
form
e:nV+=(0,...,0,*,...,*), k+p=m.
Nl N et
p—1 k+1
We now simply discard the last & columns of (10.3).

AQL(1:p) = QLHA(,1: p) + v, VT(;,1: p)
=Qh(1:pHL(1:p,1:p) + bty ,qt e + v yrme)
N’

Bs
= QL1 p)HE(L:p, 1:p) + (qfy 1 hf 1y, + Tmvih) €.
ry

In Algorithm 10.3 we have collected what we have derived so far. We have however left
open in step 3 of the algorithm how the shifts y1, .. ., g should be chosen. In ARPACK [4],
all eigenvalues of H,,, are computed. Those k eigenvalues that are furthest away from some
target value are chosen as shifts. We have not specified how we determine convergence,
too.

One can show that a QR step with shift p; transforms the vector q; in a multiple of
(A — pil)q;. In fact, a simple modification of the Arnoldi relation (10.2) gives

(A= pI)Qm = Qm (Hm — i) +rmey, = QmViR1 + rmey,.
N,
ViR,

180 CHAPTER 10. RESTARTING ARNOLDI AND LANCZOS ALGORITHMS

Algorithm 10.3 Implicitely restarted Arnoldi (IRA)
1: Let the Arnoldi relation AQ,, = QmHm + rme}, be given.

2: repeat

3: Determine k shifts pq,. .., p;

4: vii=e};

5: fori=1,...,k do

6: H,, — ;I = V;R;; /* QR factorization */
7 H,, = Vi*HmVﬁ Qm = QnV;;

8 v*i=v*'V;

9: end for

10: rp:=ql, B + rmvh
11: Qp:=Qm(;,1:p); Hp:=Hp(l:p,1:p);
12: Starting with
AQp = QpH, +rye,

execute k additional steps of the Arnoldi algorithm until
AQm = QmHm + rme:n'

13: until convergence

Comparing the first columns in this equation gives

(A—pil)qy = qgl)leT‘n +0= qgl)ru-

By consequence, all k steps combined give

k

a — Y(A)a, TR = [- p).
i=1

If p; were an eigenvalue of A then (A — p;I)qi removes components of q; in the direction
of the corresponding eigenvector. More general, if y; is close to an eigenvalue of A then
(A—piI)q will have only small components in the direction of eigenvectors corresponding
to nearby eigenvalues. Choosing the p; equal to Ritz values far away from the desired part
of the spectrum thus enhances the desired component. Still there is the danger that in each
sweep on Algorithm 10.3 the same undesired Ritz values are recovered. Therefore, other
strategies for choosing the shifts have been proposed [2]. Experimental results indicate
however, that the original strategy chosen in ARPACK mostly works best.

10.3 Convergence criterion
Let Hy,s = sV with ||s|| = 1. Let X = Qms. Then we have as earlier

(10.4) A% — O%[| = [| AQmS — QmHms|| = [|rm|||e;,s| = Bm|e7,s|-

In the Hermitian case, A = A*, the Theorem 9.1 of Krylov-Bogoliubov provides an interval
that contains an eigenvalue of A. In the general case, we have

(10.5) (A+ER=9% E=-rnqy, [E|=/|rml=>3mn

10.4. THE GENERALIZED EIGENVALUE PROBLEM 181

According to an earlier theorem we know that if A\ € o(A) is simple and ¥ is the
eigenvalue of A + F closest to A, then

IE]l 2
10.6 AP < — E|%).
(10.6) I I_y.x+0(ll)
Here, y and x are left and right eigenvectors of E corresponding to the eigenvalue A\. A
similar statement holds for the eigenvectors, but the distance (gap) to the next eigenvalue
comes into play as well.
In ARPACK, a Ritz pair (¢, X) is considered converged if

(10.7) Bmlen,s| < max(ep||[Hml|, tol - |9]).

As |9| < ||Hml|| < ||A||, the inequality ||E|| < tol- || A| holds at convergence. According
to (10.6) well-conditioned eigenvalues are well approximated.

10.4 The generalized eigenvalue problem

Let us consider now the generalized eigenvalue problem

(10.8) Ax = AMx.
Applying a shift-and-invert spectral transformation with shift o transforms (10.8) into
(10.9) Sx = (A—oM) Mx = px, p= ! =

We now execute an Arnoldi/Lanczos iteration with S to obtain
(10.10) SQm = QmHm + rme;,, QmMQm =L, QnMr,=0.

Let s with ||s|| = 1 be an eigenvector of H,, with Ritz value ¥. Let y = Q,,s be the
associated Ritz vector. Then,

(10.11) SQms = Sy = QmHys + rpe,s =y + e s.

So, y¥+rme},s can be considered a vector that is obtained by one step of inverse iteration.

This vector is an improved approximation to the desired eigenvector, obtained at negligible

cost. This so-called eigenvector purification is particularly important if M is singular.
Let us bound the residual norm of the purified vector. With (10.11) we have

(10.12) My = (A—oM)(y9 + rme;,s)
.//
y
with

[Flar = /92 + BElep,s|2.
This equality holds as y L5 r. By consequence,
Ay — AMY|| = (A — e M)y + My (g — M)
(10.13) -3
= [My — M(yd + rmey,s) /9| = || Mr]| |e},s|/[9].

Since || is large in general, we obtain good bounds for the residual of the purified eigen-
vectors.

182 CHAPTER 10. RESTARTING ARNOLDI AND LANCZOS ALGORITHMS

EIGS Find a few eigenvalues and eigenvectors of a matrix using ARPACK
D = EIGS(A) returns a vector of A’s 6 largest magnitude eigenvalues.
A must be square and should be large and sparse.

[V,D] = EIGS(A) returns a diagonal matrix D of A’s 6 largest magnitude
eigenvalues and a matrix V whose columns are the corresponding
eigenvectors.

[V,D,FLAG] = EIGS(A) also returns a convergence flag. If FLAG is O then
all the eigenvalues converged; otherwise not all converged.

EIGS(A,B) solves the generalized eigenvalue problem A*V == BxV+D. B
must be symmetric (or Hermitian) positive definite and the same size as
A. EIGS(A,[],...) indicates the standard eigenvalue problem A*V == VxD.

EIGS(A,K) and EIGS(A,B,K) return the K largest magnitude eigenvalues.

EIGS(A,K,SIGMA) and EIGS(A,B,K,SIGMA) return K eigenvalues. If SIGMA is:
LM’ or ’SM’ - Largest or Smallest Magnitude
For real symmetric problems, SIGMA may also be:
LA’ or ’SA’ - Largest or Smallest Algebraic
’BE’ - Both Ends, one more from high end if K is odd
For nonsymmetric and complex problems, SIGMA may also be:
LR’ or ’SR’ - Largest or Smallest Real part
LI’ or ’SI’ - Largest or Smallest Imaginary part
If SIGMA is a real or complex scalar including O, EIGS finds the
eigenvalues closest to SIGMA. For scalar SIGMA, and when SIGMA = ’SM’,
B need only be symmetric (or Hermitian) positive semi-definite since it
is not Cholesky factored as in the other cases.

EIGS(A,K,SIGMA,OPTS) and EIGS(A,B,K,SIGMA,OPTS) specify options:

OPTS.issym: symmetry of A or A-SIGMA*B represented by AFUN [{false} | true]
OPTS.isreal: complexity of A or A-SIGMA*B represented by AFUN [false | {true}]
OPTS.tol: convergence: Ritz estimate residual <= tol*NORM(A) [scalar | {eps}]
OPTS.maxit: maximum number of iterations [integer | {300}]

OPTS.p: number of Lanczos vectors: K+1<p<=N [integer | {2K}]

OPTS.v0: starting vector [N-by-1 vector | {randomly generated}]

OPTS.disp: diagnostic information display level [0 | {1} | 2]

OPTS.cholB: B is actually its Cholesky factor CHOL(B) [{false} | true]
OPTS.permB: sparse B is actually CHOL(B(permB,permB)) [permB | {1:N}]

Use CHOL(B) instead of B when SIGMA is a string other than ’SM’.

EIGS (AFUN,N) accepts the function AFUN instead of the matrix A. AFUN is
a function handle and Y = AFUN(X) should return
AxX if SIGMA is unspecified, or a string other than ’SM’
A\X if SIGMA is 0 or ’SM’
(A-SIGMA*I)\X if SIGMA is a nonzero scalar (standard problem)
(A-SIGMA*B)\X if SIGMA is a nonzero scalar (generalized problem)
N is the size of A. The matrix A, A-SIGMA*I or A-SIGMA*B represented by
AFUN is assumed to be real and nonsymmetric unless specified otherwise
by OPTS.isreal and OPTS.issym. In all these EIGS syntaxes, EIGS(A,...)
may be replaced by EIGS(AFUN,N,...).

Example:
A = delsq(numgrid(’C’,15)); d1 = eigs(A,5,’SM’);

Equivalently, if dnRk is the following one-line function:
% %
function y = dnRk(x,R,k)
y = (delsq(numgrid(R,k))) \ x;
% /)

n = size(A,1); opts.issym = 1;
d2 = eigs(@(x)dnRk(x,’C’,15),n,5,’SM’ ,opts);

See also eig, svds, ARPACKC, function_handle.

10.5. A NUMERICAL EXAMPLE

183

10.5 A numerical example

This example is taken from the MATLAB document pages regarding eigs. eigs is the
MATLAB interface to the ARPACK code, see page 182. The matrix called west0479 is a
479 x 479 matrix originating in a chemical engineering plant model. The matrix is available
from the Matrix Market [5], a web site that provides numerous test matrices. Its nonzero

structure is given in Fig. 10.1

479x479 Matrix west0479

0 \ v -
sol> ~).\
- L
100f . Ny
~ A N e
-~ . LN \\ ~~
150 Vs \
' L. N -
T \
K \I'. . "
g L
= T]
300 T -5?"
S~ ‘
350 ~— R ,
w_ -'.q_,:‘g ’
4}|_ [I o
400 i \
§F E N
450 '. LN
ha . LN S
0 100 300 400
nnz = 1887

Figure 10.1: Nonzero structure of the 479 x 479 matrix west0479

To compute the eight largest eigenvalues of this matrix we issue the following MATLAB

commands.

>> load west0479
>> d = eig(full(west0479)) ;
>> dlm=eigs(west0479,8);

Iteration 1: a few Ritz values of the 20-by-20 matrix:

0

(=== Ne e e N Neol

Iteration 2: a few Ritz values of the 20-by-20 matrix:

1.0e+03 *

-0.0561 - 0.0636i

184

CHAPTER 10. RESTARTING ARNOLDI AND LANCZOS ALGORITHMS

0.1081
0.1081
-0.1009
-0.1009
-0.0072
-0.0072
0.0000
0.0000

Iteration

-0.0866
-0.1009
-0.1009
-0.0072
-0.0072
.1081
.1081
.0000
.0000

Iteration

0.0614
-0.0072
-0.0072

0.1081

0.1081
-0.1009
-0.1009

0.0000

0.0000

3:
1.0e+03 *

4:
1.0e+03 *

= =0 0O0O0OO0OO0o

== O O0OO0OO0OO0oOOo

0
0
0
0
0.
0
0
1
1

.0541i
.0541i
.0666i1
.0666i
.1207i
.1207i
.70071
.70071

a few Ritz values of the 20-by-20 matrix:

.0666i
.0666i
.1207i
.1207i
.0541i
.0541i
.7007i
.7007i

a few Ritz values of the 20-by-20 matrix:

.0465i1
.1207i
.1207i
.0541i
0541i
.0666i
.0666i
.7007i
.7007i

Iteration 5: a few Ritz values of the 20-by-20 matrix:

1.0e+03 *

-0.0808
-0.0072
-0.0072
-0.1009
-0.1009
0.1081
0.1081
0.0000
0.0000

Iteration

0.0734
-0.0072
-0.0072

0.1081

6:
1.0e+03 *

= = O O0OO0OO0OOoOOo

0
0
0
0

.1207i
.1207i
.0666i
.0666i
.0541i
.0541i
.7007i
.7007i

a few Ritz values of the 20-by-20 matrix:

.0095i
.1207i
.1207i
.0541i

10.5. A NUMERICAL EXAMPLE 185

2000 T T T T T

1500 b

1000 1

500 b

-1000 i

-1500 b

20005 -100 -50 0 50 100 150

Figure 10.2: Spectrum of the matrix west0479

0.1081 + 0.0541i

-0.1009 - 0.0666i
-0.1009 + 0.0666i
0.0000 - 1.7007i

0.0000 + 1.7007i

Iteration 7: a few Ritz values of the 20-by-20 matrix:

1.0e+03 *
-0.0747

-0.0072 - 0.1207i
-0.0072 + 0.1207i
0.1081 + 0.0541i
0.1081 - 0.0541i
-0.1009 + 0.0666i
-0.1009 - 0.0666i
0.0000 + 1.7007i
0.0000 - 1.7007i

The output indicates that eigs needs seven sweeps to compute the eigenvalues to
the default accuracy of macheps||A||. The Ritz values given are the approximations of the
eigenvalues we want to compute. The complete spectrum of west0479 is given in Fig. 10.2.
Notice the different scales of the axes! Fig. 10.3 is a zoom that shows all eigenvalues except
the two very large ones. Here the axes are equally scaled. From the two figures it becomes
clear that eigs has computed the eight eigenvalues (and corresponding eigenvectors) of
largest modulus.

To compute the eigenvalues smallest in modulus we issue the following command.

dsm=eigs(west0479,8,’sm’) ;
Iteration 1: a few Ritz values of the 20-by-20 matrix:
0

186 CHAPTER 10. RESTARTING ARNOLDI AND LANCZOS ALGORITHMS

200

1501

1001

-1501

_200
-200 -150 -100 -50 0 50 100 150 200

Figure 10.3: A zoom to the center of the spectrum of matrix west0479 that excludes the
largest two eigenvalues on the imaginary axis

O OO O O OO OO

Iteration 2: a few Ritz values of the 20-by-20 matrix:
1.0e+03 *

-0.0228 - 0.0334i
0.0444
-0.0473
0.0116 + 0.0573i
0.0116 - 0.0573i
-0.0136 - 0.1752i
-0.0136 + 0.1752i
-3.4455
5.8308

Iteration 3: a few Ritz values of the 20-by-20 matrix:
1.0e+03 *

10.5. A NUMERICAL EXAMPLE 187

-0.0228 - 0.0334i
0.0444
-0.0473
0.0116 + 0.0573i
0.0116 - 0.0573i
-0.0136 + 0.1752i
-0.0136 - 0.1752i
-3.4455
5.8308

Iteration 4: a few Ritz values of the 20-by-20 matrix:
1.0e+03 *

-0.0228 + 0.0334i
0.0444
-0.0473
0.0116 - 0.0573i
0.0116 + 0.0573i
-0.0136 + 0.1752i
-0.0136 - 0.1752i
-3.4455
5.8308

Iteration 5: a few Ritz values of the 20-by-20 matrix:
1.0e+03 *

-0.0228 + 0.0334i

0.0444
-0.0473
0.0116 - 0.05731i
0.0116 + 0.0573i
-0.0136 + 0.1752i
-0.0136 - 0.1752i
-3.4455
5.8308

>> dsm

dsm =
0.0002
-0.0003
-0.0004 - 0.0057i
-0.0004 + 0.0057i
0.0034 - 0.0168i
0.0034 + 0.0168i
-0.0211

0.0225

188 CHAPTER 10. RESTARTING ARNOLDI AND LANCZOS ALGORITHMS

0.025

0.02] o
0.015
001}
0.005} L
of ® = 8
-moo.rT -

-0.01}

-0.015

-0.02 o

-0.%? -0.02 -0.015 -0.01 -0.005 0 0.005 0.01 0015 0.02 0.025

Figure 10.4: Smallest eigenvalues of the matrix west0479

>> 1./dsm

1.0e+03 *

5.8308
-3.4455
-0.0136 + 0.1752i
-0.0136 - 0.1752i
0.0116 + 0.0573i
0.0116 - 0.0573i
-0.0473
0.0444

The computed eigenvalues are depicted in Fig. 10.4

10.6 Another numerical example

We revisit the determination the acoustic eigenfrequencies and modes in the interior of a
car, see section 1.6.3. The computations are done with the finest grid depicted in Fig. 1.9.
We first compute the lowest ten eigenpairs with simultaneous inverse vector iteration
(sivit). The dimension of the search space is 15.

>> [p,e,t]=initmesh(’auto’);
>> [p,e,t]=refinemesh(’auto’,p,e,t);
>> [p,e,t]=refinemesh(’auto’,p,e,t);
>> p=jigglemesh(p,e,t);
>> [A,M]=assema(p,t,1,1,0);
>> whos
Name Size Bytes Class

10.6. ANOTHER NUMERICAL EXAMPLE 189

A 1095x1095 91540 double array (sparse)
M 1095x1095 91780 double array (sparse)
e 7x188 10528 double array
P 2x1095 17520 double array
t 4x2000 64000 double array

Grand total is 26052 elements using 275368 bytes

>> sigma=-.01;
>> p=10; tol=le-6; XO=rand(size(A,1),15);
>> [V,L] = sivit(A,M,p,X0,signma,tol);

|IRes(0) || = 0.998973
|IRes(5) || = 0.603809
|IRes(10) || = 0.0171238
|IRes(15) || = 0.00156298
| IRes(20) || = 3.69725e-05
|IRes(25) || = 7.11911e-07
>> % 256 x 156 = 375 matrix - vektor - multiplications until convergence

>>
>> format long, L

L=

.00000000000000
.01269007628847
.04438457596824
.05663501055565
.11663116522140
.13759210393200
.14273438015546
.20097619880776
.27263682280769
.29266080747831

[=le el NoNeNeoNe NNl

>> format short
>> norm(V’*M*V - eye(10))

ans =
1.8382e-15

Then we use MATLAB’s solver eigs. We set the tolerance and the shift to be the same
as with sivit. Notice that ARPACK applies a shift-and-invert spectral transformation if
a shift is given.

>> options.tol=tol; options.issym=1;

>> [v,1,flagl=eigs(A,M,p,sigma,options);

Iteration 1: a few Ritz values of the 20-by-20 matrix:
0

[l Ne

190 CHAPTER 10. RESTARTING ARNOLDI AND LANCZOS ALGORITHMS

0
0
0

Iteration 2: a few Ritz values of the 20-by-20 matrix:
3.3039
.5381
.7399
.5473
7754
.8970
15.0071
18.3876
44.0721
100.0000

N AW

Iteration 3: a few Ritz values of the 20-by-20 matrix:
3.3040

3.5381
4.7399
6.5473
6.7754

7.8970
15.0071
18.3876
44.0721
100.0000

>> flag
flag =
0
>> 1=diag(1l); 1=l(end:-1:1); norm(1-L)
ans =
3.7671e-14
>> norm(v’*M*v - eye(10))

ans = 8.0575e-15

Clearly the eigenvectors are mutually m-orthogonal. Notice that eigs returns the
eigenvalues sorted from large to small such that they have to be reordered before comparing
with those sivit computed.

In the next step we compute the largest eigenvalues of the matrix

(10.14) S=R(A—oM)'RT,

where RTR = M is the Cholesky factorization of M. The matrix in (10.14) is transferred
to eigs as a function.

>> type afun

10.6. ANOTHER NUMERICAL EXAMPLE 191

function x = afun(x)
global RA RB

x = RB*(RA\(RA’\ (RB’*x))) ;

>> global RA RB

>> RA = chol (A-sigma*M) ;

>> RB = chol(M);

>> [v,11,flag]=eigs(’afun’,n,10,’1m’ ,options) ;

Iteration 1: a few Ritz values of the 20-by-20 matrix:
0

OO OO0 O0OO0O OO0

Iteration 2: a few Ritz values of the 20-by-20 matrix:
3.3030
3.5380
4.7399
6.5473
6.7754
7.8970
15.0071
18.3876
44.0721
100.0000

Iteration 3: a few Ritz values of the 20-by-20 matrix:
3.3040
3.5381
4.7399
6.5473
6.7754
7.8970
15.0071
18.3876
44.0721
100.0000

>> flag
flag =
0
>> 11 = diag(11)

11 =

192 CHAPTER 10. RESTARTING ARNOLDI AND LANCZOS ALGORITHMS

100.0000
44.0721
18.3876

.0071

.8970

7754

.5473

.7399

.5381

.3040

-

W Wk oo N,

>> sigma + 1./11
ans =

.0000
.0127
.0444
0566
.1166
.1376
.1427
.2010
.2726
.2927

[«leleleNoNeoNeNoNeNel

>> norm(sigma + 1./11 - 1)
ans =

4.4047e-14

10.7 The Lanczos algorithm with thick restarts

The implicit restarting procedures discussed so far are very clever ways to get rid of
unwanted directions in the search space and still keeping a Lanczos or Arnoldi basis. The
latter admits to continue the iteration in a known framework. The Lanczos or Arnoldi
relations hold that admit very efficient checks for convergence. The restart has the effect
of altering the starting vector.

In this and the next section we discuss algorithms that work with Krylov spaces but
are not restricted to Krylov or Arnoldi bases. Before continuing we make a step back and
consider how we can determine if a given subspace of F" is a Krylov space at all.

Let A be an n-by-n matrix and let vi,...,v, be linearly independent n-vectors. Is
the subspace V := span{vi,...,vi} a Krylov space, i.e., is there a vector q € V such that
V = Ki(A,q)? The following theorem gives the answer [3, 10].

Theorem 10.1 V = span{vy,..., v} is a Krylov space if and only if there is a k-by-k
matriz M such that

(10.15) R:=AV—-VM, V=[vi,...,v,

has rank one and span{vi,...,vg, R(R)} has dimension k + 1.

