THE THEOREM ON SMALL SIMPLICES AND APPLICATIONS

1. Reminder on homotopies

As a warmup we recall the basic ideas from the proof of the following theorem:
Theorem 1.1. If $f, g: X \rightarrow Y$ are homotopic continuous maps of topological spaces, the induced maps $S_{\bullet}(X) \rightarrow S_{\bullet}(Y)$ are chain homotopic.

Recall that chain homotopy of the induced maps means that there exist maps $k_{i}: S_{i}(X) \rightarrow S_{i+1}(X)$ for all i such that $f_{i}-g_{i}=d_{i+1} \circ k_{i}+k_{i-1} \circ d_{i}$ for all i.

Some ideas from the proof will be needed later, so let us give a sketch. The first step is:

Proposition 1.2. If $X \subset \mathbf{R}^{n}$ is a bounded convex subset and $x_{0} \in X$, the identity map of X is chain homotopic to the map $\epsilon: S_{\bullet}(X) \rightarrow S_{\bullet}(X)$ such that

$$
\epsilon_{i}= \begin{cases}x \mapsto x_{0} & i=0 \\ 0 & i>0\end{cases}
$$

Consequently, $H_{i}(X)=0$ for $i>0$ and in fact $\widetilde{H}_{i}(X)=0$ for all i.
Proof. The proof uses the cone construction: for a simplex $\sigma: \Delta_{i} \rightarrow X$ define $k(\sigma): \Delta_{i+1} \rightarrow X$ by

$$
k(\sigma)\left(t_{0}, \ldots, t_{i+1}\right)= \begin{cases}x_{0} & t_{0}=1 \\ t_{0} x_{0}+\sigma\left(\frac{t_{1}}{1-t_{0}}, \ldots \frac{t_{i+1}}{1-t_{0}}\right) & t_{0} \neq 1\end{cases}
$$

(This is the cone with vertex x_{0} above $\sigma\left(\Delta_{i}\right)$.) A direct computation seen in class shows that this map induces the required chain homotopy.

A functorial morphism of complexes $\phi: S_{\bullet}(X) \rightarrow S_{\bullet}(X)$ is a collection of morphisms of complexes $\phi^{X}: S_{\bullet}(X) \rightarrow S \bullet(X)$ for every topological space X such that for every continuous map $X \rightarrow Y$ the diagram

commutes.
Proposition 1.3. Assume $\phi, \psi: S_{\bullet}(X) \rightarrow S_{\bullet}(X)$ are functorial morphisms of complexes such that $\phi_{0}=\psi_{0}: S_{0}(X) \rightarrow S_{0}(X)$. Then ϕ and ψ are functorially chain homotopic (i.e. there exist chain homotopies for all X satisfying similar commutative diagrams).

Proof. Up to replacing ϕ by $\phi-\psi$ we may assume $\psi=0$. We construct a functorial chain homotopy k such that $\phi_{i}=d_{i+1} \circ k_{i}+k_{i-1} \circ d_{i}$ by induction on i. Set $k_{0}=0$ and assume the k_{j} have been constructed for $j<i$.

Assume first $X=\Delta_{i}$, and let $\iota \in S_{i}\left(\Delta_{i}\right)$ be the identity map of Δ_{i}. Then

$$
d_{i}\left(\phi(\iota)-k_{i-1}\left(d_{i}(\iota)\right)\right)=\phi\left(d_{i}(\iota)\right)-\left(d_{i} \circ k_{i-1}\right)\left(d_{i}(\iota)\right)=k_{i-2}\left(d_{i-1}\left(d_{i}(\iota)\right)\right)=0
$$

where in the first equality we used that ϕ is a morphism of complexes, then we used the inductive assumption and finally $d_{i-1} \circ d_{i}=0$.

Since $\Delta_{i} \subset \mathbf{R}^{i+1}$ is a bounded convex subset, its higher homology groups are 0 by the previous proposition. Therefore we find $\alpha \in S_{i+1}\left(\Delta_{i}\right)$ such that

$$
d_{i+1}(\alpha)=\phi(\iota)-k_{i-1}\left(d_{i}(\iota)\right) .
$$

Now for all spaces X define $k_{i}: S_{i}(X) \rightarrow S_{i+1}(X)$ by $k_{i}(\sigma):=\sigma \circ \alpha$ for each $\sigma: \Delta_{i} \rightarrow X$. By construction this map is functorial. To check it is a chain homotopy, notice first that

$$
d_{i+1}\left(k_{i}(\sigma)\right)=d_{i+1}(\sigma \circ \alpha)=\sigma\left(d_{i+1}(\alpha)\right)
$$

as the continuous map σ induces a morphism of complexes $S_{\bullet}\left(\Delta_{i}\right) \rightarrow S_{\bullet}(X)$. Similarly, since by assumption both ϕ and k_{i-1} are functorial for the continuous map $\sigma: \Delta_{i} \rightarrow X$, we get
$\sigma\left(d_{i+1}(\alpha)\right)=\sigma\left(\phi(\iota)-k_{i-1}\left(d_{i}(\iota)\right)\right)=\phi(\sigma(\iota))-k_{i-1}\left(\sigma\left(d_{i}(\iota)\right)\right)=\phi(\sigma)-k_{i-1}\left(d_{i}(\sigma)\right)$
because $\sigma(\iota)=\sigma$ and σ commutes with d_{i} as above. Putting everything together we obtain

$$
d_{i+1}\left(k_{i}(\sigma)\right)=\phi(\sigma)-k_{i-1}\left(d_{i}(\sigma)\right)
$$

as required.

Remarks 1.4.

1. The same statement holds if instead of $\phi_{0}=\psi_{0}$ we assume $\eta \circ \phi_{0}=\eta \circ \psi_{0}$, where $\eta: S_{0}(X) \rightarrow \mathbf{Z}$ is given by sending all $x \in X$ to $1 \in \mathbf{Z}$. The proof if the same, except we do not set $k_{0}=0$ but use $\widetilde{H}_{0}\left(\Delta_{i}\right)=0$ coming from the previous proposition to construct k_{0}.
2. The same statement holds if we consider maps $\phi, \psi: S_{\bullet}(X) \rightarrow S_{\bullet}([0,1] \times X)$ with similar properties. [The sets $[0,1] \times \Delta_{i}$ are also bounded convex subsets in \mathbf{R}^{i+2}, so the same proof goes over.]

Proof of Theorem 1.1. Consider the maps $\tilde{\phi}, \tilde{\psi}: X \rightarrow[0,1] \times X$ given by $\tilde{\phi}(x)=$ $(0, x), \tilde{\psi}(x)=(1, x)$. They induce functorial morphisms of complexes ϕ, ψ : $S_{\bullet}(X) \rightarrow S_{\bullet}([0,1] \times X)$ such that $\eta \circ \phi=\eta \circ \psi$, where η is as in the first remark above. So by the previous proposition and remarks they are chain homotopic.

Now let $h:[0,1] \times X \rightarrow Y$ be a homotopy between f and g. Notice that $h \circ \tilde{\phi}=f$ and $h \circ \tilde{\psi}=g$. Thus the maps $S_{\bullet}(X) \rightarrow S_{\bullet}(X)$ induced by f and g equal the compositions of $h: S_{\bullet}([0,1] \times X) \rightarrow S_{\bullet}(X)$ with the two chain homotopic maps ϕ and ψ. As such they are chain homotopic.

2. Background from homological algebra

A short exact sequence of complexes is a sequence of morphisms of complexes

$$
0 \rightarrow A_{\bullet} \rightarrow B_{\bullet} \rightarrow C_{\bullet} \rightarrow 0
$$

such that the sequences

$$
0 \rightarrow A_{i} \rightarrow B_{i} \rightarrow C_{i} \rightarrow 0
$$

are exact for all i. Now we have the following basic fact.

Proposition 2.1. Let

$$
0 \rightarrow A \bullet \rightarrow B \bullet \rightarrow C \bullet \rightarrow 0
$$

be a short exact sequence of complexes of abelian groups. Then there is a long exact sequence

$$
\cdots \rightarrow H_{i}\left(A_{\bullet}\right) \rightarrow H_{i}\left(B_{\bullet}\right) \rightarrow H_{i}\left(C_{\bullet}\right) \xrightarrow{\partial} H_{i-1}\left(A_{\bullet}\right) \rightarrow H_{i-1}\left(B_{\bullet}\right) \rightarrow \ldots
$$

The map ∂ is usually called the connecting homomorphism or the boundary map. For the proof of the proposition we need the following equally basic lemma.
Lemma 2.2. (The Snake Lemma) Given a commutative diagram of abelian groups

with exact rows, there is an exact sequence

$$
\operatorname{ker}(\alpha) \rightarrow \operatorname{ker}(\beta) \rightarrow \operatorname{ker}(\gamma) \rightarrow \operatorname{coker}(\alpha) \rightarrow \operatorname{coker}(\beta) \rightarrow \operatorname{coker}(\gamma)
$$

Proof. The construction of all maps in the sequence is immediate, except for the map $\partial: \operatorname{ker}(\gamma) \rightarrow$ coker (α). For this, lift $c \in \operatorname{ker}(\gamma)$ to $b \in B$. By commutativity of the right square, the element $\beta(b)$ maps to 0 in C^{\prime}, hence it comes from a unique $a^{\prime} \in A^{\prime}$. Define $\partial(c)$ as the image of a^{\prime} in coker (α). Two choices of b differ by an element $a \in A$ which maps to 0 in coker (α), so ∂ is well-defined. Checking exactness is left as an exercise to the readers.

Proof of Proposition 2.1: Applying the Snake Lemma to the diagram

yields a long exact sequence

$$
H_{i}\left(A_{\bullet}\right) \rightarrow H_{i}\left(B_{\bullet}\right) \rightarrow H_{i}\left(C_{\bullet}\right) \rightarrow H_{i-1}\left(A_{\bullet}\right) \rightarrow H_{i-1}\left(B_{\bullet}\right) \rightarrow H_{i-1}\left(C^{\bullet}\right),
$$

and the proposition is obtained by splicing these sequences together.

3. The theorem on small simplices

Consider an open covering $\mathcal{U}=\left\{U_{j}: j \in I\right\}$ of a topological space X. Define subgroups $S_{i}^{\mathcal{U}}(X) \subset S_{i}(X)$ by
$S_{i}^{\mathcal{U}}(X):=$ free abelian group with basis $\left\{\sigma: \Delta_{i} \rightarrow X: \operatorname{Im}(\sigma) \subset U_{i}\right.$ for some $\left.j \in I\right\}$ Together with the restrictions of the differentials $d_{i}: S_{i}(X) \rightarrow S_{i-1}(X)$ to $S_{i}^{\mathcal{U}}(X)$ these groups form a subcomplex $S_{\bullet}^{\mathcal{U}}(X)$ of the singular complex $S_{\bullet}(X)$. Another way to view this complex is to consider the images of the natural maps $S_{\bullet}\left(U_{j}\right) \rightarrow S_{\bullet}(X)$ for all $j \in I$ and take the subcomplex generated by them (i.e. the subgroups of the $S_{i}(X)$ generated by the $\operatorname{Im}\left(S_{i}\left(U_{j}\right) \rightarrow S_{i}(X)\right)$ for all j together with the restrictions of the d_{i}).
Theorem 3.1 (Theorem on small simplices). The inclusion map $S_{\bullet}^{\mathcal{U}}(X) \hookrightarrow S_{\bullet}(X)$ induces isomorphisms $H_{i}\left(S_{\bullet}^{\mathcal{U}}(X)\right) \xrightarrow{\sim} H_{i}(X)$ for all $i \geq 0$.

In other words, the homology groups of X can be computed using only simplices that are 'so small' that their image is contained in one of the 'small' open subsets in the covering of X.

We begin with the geometric part of the proof.

Definition 3.2. Assume given $i+1$ points $v_{0}, v_{1}, \ldots, v_{i}$ in \mathbf{R}^{i+1} (identified with vectors from the origin). The affine i-simplex spanned by v_{0}, \ldots, v_{i} is their convex hull:

$$
\Delta_{v_{0}, \ldots, v_{i}}=\left\{t_{0} v_{0}+\cdots+t_{i} v_{i}: t_{1}+\cdots+t_{i}=1,0 \leq t_{j} \leq 1 \text { for all } j\right\}
$$

So the standard simplex Δ_{i} is the affine simplex spanned by the unit vectors in \mathbf{R}^{i+1}.

An affine simplex is any $\Delta_{v_{0}, \ldots, v_{i}}$ defined as above. Its faces are the subsets given by $t_{j}=0(j=0, \ldots, i)$.

The barycenter of the affine simplex $\Delta_{v_{0}, \ldots, v_{i}}$ is the point

$$
b:=\frac{1}{i+1} v_{0}+\cdots+\frac{1}{i+1} v_{i}
$$

For example, the barycenter of the unit simplex $\Delta_{i} \subset \mathbf{R}^{i+1}$ is the point with coordinates $(1 /(i+1), \ldots, 1 /(i+1))$ (and not the origin!).
Construction 3.3. The barycentric subdivision of an affine i-simplex Δ is defined inductively as follows. For $i=0$ the simplex is a point and the subdivision is trivial. Suppose the barycentric subdivision has been constructed for all faces of Δ. Define the subdivision of Δ by joining all vertices of the barycentric subdivisions of the faces to the barycenter b of Δ.

So for $\Delta=\Delta_{i}$ and $i=1$ we get an interval divided in two equal intervals by the midpoint. For $i=2$ we get a subdivision of the triangle in 6 smaller triangles by joining the barycenter to the 3 vertices of the triangle and to the 3 midpoints of edges of the triangle. (See the pictures on p. 120 of Hatcher's book.)

We now want to measure 'how small' a simplex in the barycentric subdivision can be. Recall that the diameter of a subset of \mathbf{R}^{i+1} is the maximal (Euclidean) distance between two of its points. For an affine simplex this is the same as the maximal distance between two of its vertices.

Lemma 3.4. The diameter of each small simplex in the barycentric subdivision of an affine i-simplex Δ is at most $i /(i+1) \cdot \operatorname{diameter}(\Delta)$.

Proof. Induction on i : the cases $i=0,1$ are clear. Let Δ^{\prime} be a subsimplex in the barycentric subdivision of Δ. One of its vertices is the barycenter b : denote the others by w_{1}, \ldots, w_{i}. Consider the longest edge of Δ^{\prime}. If it does not contain b, we are done by induction as then this edge lies in one of the faces of Δ and $i /(i+1)>(i-1) / i$. So say the edge $\overline{b w_{1}}$ between b and w_{1} is the longest edge of Δ^{\prime}. Here w_{1} must be a vertex of Δ because the barycenter of a face of Δ is closer to b than the vertices of the face. Let $\Delta^{1} \subset \Delta$ be the face of Δ not containing w_{1}, and let b_{1} be its barycenter. Then

$$
b=\frac{1}{i+1} w_{1}+\frac{i}{i+1} b_{1}
$$

and therefore

$$
\operatorname{diameter}\left(\Delta^{\prime}\right)=\operatorname{length}\left(\overline{b w_{1}}\right)=\frac{i}{i+1} \operatorname{length}\left(\overline{b_{1} w_{1}}\right) \leq \frac{i}{i+1} \operatorname{diameter}(\Delta)
$$

Now back to topology. Let X be a topological space. We define a morphism of complexes $\beta: S_{\bullet}(X) \rightarrow S_{\bullet}(X)$ which will be functorial in X.
Construction 3.5. For $i=0$ set $\beta_{0}=\mathrm{id}$.
Assume $\beta_{j}: S_{j}(X) \rightarrow S_{j}(X)$ has been constructed for $j<i$. We now define $\beta_{i}: S_{i}(X) \rightarrow S_{i}(X)$. Let (as in the proof of Proposition 1.3) $\iota: \Delta_{i} \rightarrow \Delta_{i}$ be the
identity simplex. Consider $d_{i}(\iota) \in S_{i-1}\left(\Delta_{i}\right)$. By assumption we have an element $\beta_{i-1}\left(d_{i}(\iota)\right) \in S_{i-1}\left(\Delta_{i}\right)$. Define

$$
\beta_{i}(\iota):=k^{b}\left(\beta_{i-1}\left(d_{i}(\iota)\right)\right) \in S_{i}\left(\Delta_{i}\right)
$$

where k^{b} is the chain homotopy map $S_{i-1}\left(\Delta_{i}\right) \rightarrow S_{i}\left(\Delta_{i}\right)$ given by the cone construction (seen in the proof of Proposition 1.2) such that the vertex of the cone is the barycenter b of Δ_{i}. Finally, given an arbitrary simplex $\Delta_{i} \rightarrow X$, set

$$
\beta_{i}(\sigma):=\sigma\left(\beta_{i}(\iota)\right)
$$

By construction, β_{i} is functorial in X.
Remark 3.6. If you follow the construction carefully, you see that if we write

$$
\beta_{i}(\iota)=\sum n_{i} \sigma_{i}
$$

with some $\sigma_{i}: \Delta_{i} \rightarrow \Delta_{i}$, then all the n_{i} are equal to ± 1 and the images of the σ_{i} are the simplices in the barycentric subdivision of Δ_{i}. Hence they are of diameter $\leq i /(i+1) \sqrt{2}$ by Lemma 3.4. Furthermore, the barycenter of $\operatorname{Im}\left(\sigma_{i}\right)$ will be $\sigma_{i}(b)$.

We may iterate β_{i} : the images of the simplices in $\beta^{2}(\iota)=(\beta \circ \beta)(\iota)$ will be small simplices in the barycentric subdivision of each $\operatorname{Im}\left(\sigma_{i}\right)$ by our previous observation. Hence by Lemma 3.4 again they will be of diameter $\leq(i /(i+1))^{2} \sqrt{2}$.

Iterating r times, we obtain that the images of the simplices in $\beta^{r}(\iota)$ will be of diameter $\leq(i /(i+1))^{r} \sqrt{2}$, hence their diameter tends to 0 .

Lemma 3.7. The maps $\beta_{i}: S_{i}(X) \rightarrow S_{i}(X)$ assemble to a morphism of complexes $\beta: S_{\bullet}(X) \rightarrow S_{\bullet}(X)$.

Proof. We have to show $\beta_{i-1} \circ d_{i}=d_{i} \circ \beta_{i}$ for $i>0$. We do this by induction on i. Given $\sigma: \Delta_{i} \rightarrow X$, we have

$$
d_{i} \beta_{i}(\sigma)=d_{i}\left(\sigma\left(\beta_{i}(\iota)\right)\right)=\sigma\left(d_{i}\left(\beta_{i}(\iota)\right)\right)=\sigma\left(d_{i}\left(k^{b}\left(\beta_{i-1}\left(d_{i}(\iota)\right)\right)\right)\right.
$$

using (as in the proof of Proposition 1.3) that σ induces a morphism of complexes $S_{\bullet}\left(\Delta_{i}\right) \rightarrow S_{\bullet}(X)$ and that β_{i-1} is functorial. We know from the proof of Proposition 1.2 that k^{b} defines a certain chain homotopy on $S_{\bullet}\left(\Delta_{i}\right)$. For $i=1$ it means $d_{1} \circ k^{b}=\mathrm{id}-\epsilon_{0}$. So we obtain

$$
d_{1}\left(\beta_{1}(\sigma)\right)=\sigma\left(\beta_{0}\left(d_{1}(\iota)\right)\right)-\sigma\left(\epsilon_{0}\left(\beta_{0}\left(\left(d_{1}(\iota)\right)\right)\right)=\sigma\left(d_{1}(\iota)\right)-\sigma\left(\epsilon_{0}\left(d_{1}(\iota)\right)\right)=d_{1}(\sigma)\right.
$$

using $\beta_{0}=\mathrm{id}$ and $\epsilon_{0}\left(d_{1}(\iota)\right)=b-b=0$, which is the case $i=1$ of the lemma.
On the other hand, for $i>1$ we have

$$
\mathrm{id}=d_{i} \circ k_{i-1}^{b}+k_{i-2}^{b} \circ d_{i-1}
$$

so

$$
d_{i}\left(k_{i-1}^{b}\left(\beta_{i-1}\left(d_{i}(\iota)\right)\right)=\beta_{i-1}\left(d_{i}(\iota)\right)-k_{i-2}^{b}\left(d_{i-1}\left(\beta_{i-1}\left(d_{i}(\iota)\right)\right)\right)\right.
$$

where by induction

$$
d_{i-1}\left(\beta_{i-1}\left(d_{i}(\iota)\right)\right)=\beta_{i-2}\left(d_{i-1}\left(d_{i}(\iota)\right)\right)=0
$$

using $d_{i-1} \circ d_{i}=0$. So

$$
d_{i} k_{i-1}^{b}\left(\beta_{i-1}\left(d_{i}(\iota)\right)=\beta_{i-1}\left(d_{i}(\iota)\right)\right.
$$

whence we compute as in the proof of Proposition 1.3

$$
\left.\sigma\left(d_{i} k_{i-1}^{b}\left(\beta_{i-1}\left(d_{i}(\iota)\right)\right)=\sigma\left(\beta_{i-1}\left(d_{i}(\iota)\right)\right)=\beta_{i-1} \sigma\left(d_{i}(\iota)\right)\right)=\beta_{i-1}\left(d_{i}(\sigma)\right)\right)
$$

as required.
Lemma 3.8. The map $\beta: S_{\bullet}(X) \rightarrow S_{\bullet}(X)$ is functorially chain homotopic to the identity map of $S_{\bullet}(X)$. Similarly $\beta^{r}=\beta \circ \beta \circ \cdots \beta$ is functorially chain homotopic to the identity map of $S_{\bullet}(X)$ for all $r>0$.

Proof. By construction, β^{r} is a functorial morphism of complexes such that $\beta_{0}^{r}=\mathrm{id}$. Thus it is functorially chain homotopic to the identity map by Proposition 1.3. \square

Lemma 3.9. Fix an open covering $\mathcal{U}=\left\{U_{j}: j \in I\right\}$ of X.
Given $z \in S_{i}(X)$, there exists $r>0$ such that $\beta^{r}(z) \in S_{i}^{\mathcal{U}}(X)$.
Proof. Since z is a linear combination of simplices $\sigma: \Delta_{i} \rightarrow X$, it is enough to show that $\beta^{r}(\sigma) \in S^{\mathcal{U}}(X)$ for some $r>0$. Observe that the system $\left\{\sigma^{-1}\left(U_{j}\right): j \in I\right\}$ is an open covering of Δ_{i}, and Δ_{i} is a compact metric space. Hence we can apply Lebesgue's lemma from general topology (see e.g. 'Lebesgue's number lemma' on en.wikipedia.org) according to which there exists $\varepsilon>0$ such that every subset of diameter $<\varepsilon$ contained in Δ_{i} is in fact contained in one of the $\sigma^{-1}\left(U_{j}\right)$. Hence by Remark 3.6 for r large enough all simplices involved in $\beta^{r}(\iota)$ will be contained in some $\sigma^{-1}\left(U_{j}\right)$. This implies that all simplices involved in $\beta^{r}(\sigma)$ will be contained in some U_{j}, as required.

Proof of Small Simplices Theorem. The theorem is obvious for $i=0$. To prove the cases $i>0$, consider the exact sequence of complexes

$$
0 \rightarrow S_{\bullet}^{\mathcal{U}}(X) \rightarrow S_{\bullet}(X) \rightarrow S_{\bullet}(X) / S_{\bullet}^{\mathcal{U}}(X) \rightarrow 0
$$

Part of the associated long exact sequence (Proposition 2.1) reads

$$
H_{i+1}\left(S_{\bullet}(X) / S_{\bullet}^{\mathcal{U}}(X)\right) \rightarrow H_{i}\left(S_{\bullet}^{\mathcal{U}}(X)\right) \rightarrow H_{i}\left(S_{\bullet}(X)\right) \rightarrow H_{i}\left(S_{\bullet}(X) / S_{\bullet}^{\mathcal{U}}(X)\right)
$$

So it will be enough to prove $H_{i}\left(S_{\bullet}(X) / S_{\bullet}^{\mathcal{U}}(X)\right)=0$ for all $i>0$. By definition of H_{i}, a class in $H_{i}\left(S_{\bullet}(X) / S_{\bullet}^{\mathcal{U}}(X)\right)$ is represented by an element $z \in S_{i}(X)$ such that $d_{i}(z) \in S_{i-1}^{\mathcal{U}}(X)$. By Lemma 3.8, there exists a functorial chain homotopy k of $S \bullet(X)$ such that

$$
z-\beta_{i}^{r}(z)=d_{i+1}\left(k_{i}(z)\right)+k_{i-1}\left(d_{i}(z)\right) .
$$

Now $d_{i}(z) \in S_{i-1}^{\mathcal{U}}(X)$ means that $d_{i}(z)$ is a sum of simplices $\sigma_{j}: \Delta_{i-1} \rightarrow X$ such that $\sigma_{j}\left(\Delta_{i-1}\right) \subset U_{j}$ for some $U_{j} \in \mathcal{U}$. In other words, $\sigma_{j}: \Delta_{i-1} \rightarrow X$ can be identified with an element of $S_{i-1}\left(U_{j}\right)$. But since k is a functorial chain homotopy defined for all topological spaces and in particular for U_{j}, we see that $k_{i-1}\left(\sigma_{j}\right): \Delta_{i} \rightarrow X$ identifies with an element of $S_{i}\left(U_{j}\right)$. Doing this for all j we get that $k_{i-1} d_{i}(z) \in S_{i}^{\mathcal{U}}(X)$. On the other hand, by the previous lemma we have $\beta^{r}(z) \in S_{i}^{\mathcal{U}}(X)$ for r large enough. So we get

$$
z=d_{i+1}\left(k_{i}(z)\right)+\text { an element of } S_{i}^{\mathcal{U}}(X) .
$$

But this means exactly that the class of z is 0 in $H_{i}\left(S_{\bullet}(X) / S_{\bullet}^{\mathcal{U}}(X)\right)$.
Remark 3.10. Inspection of the proof shows that the statement of the theorem holds under the weaker condition that the U_{j} are arbitrary subsets of X such that their interiors form an open covering of X.

4. Applications

Let $X=U \cup V$ be a covering of the topological space X by two open sets. In the notation of the previous section we have a short exact sequence of complexes

$$
0 \rightarrow S_{\bullet}(U \cap V) \rightarrow S_{\bullet}(U) \oplus S_{\bullet}(V) \rightarrow S_{\bullet}^{\mathcal{U}}(X) \rightarrow 0
$$

where $\mathcal{U}=\{U, V\}$, the first map is induced by the natural inclusions $S_{\bullet}(U \cap V) \hookrightarrow$ $S_{\bullet}(U)$ and $S_{\bullet}(U \cap V) \hookrightarrow S_{\bullet}(V)$, and the second map by the difference of the natural inclusions $i_{U}: S_{\bullet}(U) \hookrightarrow S_{\bullet}(X)$ and $i_{V}: S_{\bullet}(V) \hookrightarrow S_{\bullet}(X)$ (i.e. $(x, y) \mapsto$ $\left.i_{U}(x)-i_{V}(y)\right)$.

Applying Proposition 2.1 gives a long exact sequence

$$
\cdots \rightarrow H_{i}(U \cap V) \rightarrow H_{i}(U) \oplus H_{i}(V) \rightarrow H_{i}\left(S_{\bullet}^{\mathcal{U}}(X)\right) \rightarrow H_{i-1}(U \cap V) \rightarrow \cdots
$$

But by the theorem on small simplices the natural maps $H_{i}\left(S_{\bullet}^{\mathcal{U}}(X)\right) \rightarrow H_{i}(X)$ are isomorphisms for all i. So we obtain:

Theorem 4.1 (Mayer-Vietoris sequence). Let $X=U \cup V$ be a covering of the topological space X by two open sets. There is a long exact sequence

$$
\cdots \rightarrow H_{i}(U \cap V) \rightarrow H_{i}(U) \oplus H_{i}(V) \rightarrow H_{i}(X) \rightarrow H_{i-1}(U \cap V) \rightarrow \cdots
$$

Remark 4.2. Again the theorem also holds if we only assume that the interiors of U and V cover X, as in Remark 3.10.

Another application concerns relative homology groups. These are defined as follows.

Given a subspace $T \subset X$ of a topological space T, define

$$
S_{\bullet}(X, T):=\operatorname{coker}\left(S_{\bullet}(T) \hookrightarrow S_{\bullet}(X)\right)
$$

and

$$
H_{i}(X, T):=H_{i}\left(S_{\bullet}(X, T)\right)
$$

for $i \geq 0$. These are the relative homology groups of X with respect to $T .{ }^{1}$
Define the category of pairs of topological spaces as the category whose objects are pairs (X, T) with T a subspace of X, and morphisms $(X, T) \rightarrow\left(X^{\prime}, T^{\prime}\right)$ are given by pairs of continuous maps $\left(\phi,\left.\phi\right|_{T}\right)$ where $\phi: X \rightarrow X^{\prime}$ is such that $\phi(T) \subset T^{\prime}$. The assignment $(X, T) \mapsto S_{\bullet}(X, T)$ is a functor from the category of pairs of spaces to complexes of abelian groups, and the assignments $(X, T) \mapsto H_{i}(X, T)$ are functors to the category of abelian groups.

The exact sequence of complexes

$$
0 \rightarrow S_{\bullet}(T) \rightarrow S_{\bullet}(X) \rightarrow S_{\bullet}(X, T) \rightarrow 0
$$

gives rise to a long exact sequence

$$
\cdots \rightarrow H_{i}(T) \rightarrow H_{i}(X) \rightarrow H_{i}(X, T) \rightarrow H_{i-1}(T) \rightarrow H_{i-1}(X) \rightarrow \cdots
$$

by Proposition 2.1, called the relative homology sequence.
Remark 4.3. If $f, g:(X, T) \rightarrow\left(X^{\prime}, T^{\prime}\right)$ are morphisms of pairs of spaces as above such that f is homotopic to g on X and $\left.f\right|_{T}$ is homotopic to $\left.g\right|_{T}$ on T, then the induced maps $H_{i}(X, T) \rightarrow H_{i}\left(X^{\prime}, T^{\prime}\right)$ are the same. This is proven in the same way as Theorem 1.1, by constructing a chain homotopy on the complex $S_{\bullet}(X, T)$.

An important application of the small simplices theorem is the following
Theorem 4.4 (Excision). Let $T_{2} \subset T_{1} \subset X$ be subspaces such that the closure of T_{2} is contained in the interior of T_{1}. Then the natural maps

$$
H_{i}\left(X \backslash T_{2}, T_{1} \backslash T_{2}\right) \rightarrow H_{i}\left(X, T_{1}\right)
$$

induced by the inclusion maps $X \backslash T_{2} \rightarrow X, T_{1} \backslash T_{2} \rightarrow T_{1}$ are isomorphisms for all i.

Thus the theorem says that relative homology does not change if we excise (cut out) a small subset from T_{1}. This will be very useful for the computation of homology groups of spaces.

[^0]Proof. We apply the theorem on small simplices to the covering \mathcal{U} of X formed by T_{1} and $X \backslash T_{2}$. This is not necessarily an open covering, but by assumption the interiors of T_{1} and $X \backslash T_{2}$ cover X, so the theorem applies by Remark 3.10. Note that we may identify each $S_{i}^{\mathcal{U}}(X)$ with the subgroup $S_{i}\left(T_{1}\right)+S_{i}\left(X \backslash T_{2}\right)$ of $S_{i}(X)$. Similarly, we may identify $S_{i}\left(T_{1} \backslash T_{2}\right)$ with the subgroup $S_{i}\left(T_{1}\right) \cap S_{i}\left(X \backslash T_{2}\right)$ of $S_{i}(X)$. The well-known isomorphisms of group theory

$$
S_{i}\left(X \backslash T_{1}\right) /\left(S_{i}\left(T_{1}\right) \cap S_{i}\left(X \backslash T_{2}\right)\right) \xrightarrow{\sim}\left(S_{i}\left(T_{1}\right)+S_{i}\left(X \backslash T_{2}\right)\right) / S_{i}\left(T_{1}\right)
$$

thus identify with isomorphisms

$$
S_{i}\left(X \backslash T_{1}\right) / S_{i}\left(T_{1} \backslash T_{2}\right) \xrightarrow{\sim} S_{i}^{\mathcal{U}}(X) / S_{i}\left(T_{1}\right)
$$

and assemble to an isomorphism of complexes

$$
S_{\bullet}\left(X \backslash T_{1}\right) / S_{\bullet}\left(T_{1} \backslash T_{2}\right) \xrightarrow{\sim} S_{\bullet}^{\mathcal{U}}(X) / S_{\bullet}\left(T_{1}\right)
$$

Taking homology we get

$$
\begin{equation*}
H_{i}\left(X \backslash T_{1}, T_{1} \backslash T_{2}\right) \xrightarrow{\sim} H_{i}\left(S_{\bullet}^{\mathcal{U}}(X) / S_{\bullet}\left(T_{1}\right)\right) . \tag{1}
\end{equation*}
$$

On the other hand, the exact sequence of complexes

$$
0 \rightarrow S_{\bullet}\left(T_{1}\right) \rightarrow S_{\bullet}^{\mathcal{U}}(X) \rightarrow S_{\bullet}^{\mathcal{U}}(X) / S_{\bullet}\left(T_{1}\right) \rightarrow 0
$$

induces a long exact sequence

$$
\cdots \rightarrow H_{i}\left(T_{1}\right) \rightarrow H_{i}\left(S_{\bullet}^{\mathcal{U}}(X)\right) \rightarrow H_{i}\left(S_{\bullet}^{\mathcal{U}}(X) / S_{\bullet}\left(T_{1}\right)\right) \rightarrow H_{i-1}\left(T_{1}\right) \rightarrow \cdots
$$

where we may replace $H_{i}\left(S_{\bullet}^{\mathcal{U}}(X)\right)$ by $H_{i}(X)$ using the small simplices theorem. Comparing the long exact sequence

$$
\cdots \rightarrow H_{i}\left(T_{1}\right) \rightarrow H_{i}(X) \rightarrow H_{i}\left(S_{\bullet}^{\mathcal{U}}(X) / S_{\bullet}\left(T_{1}\right)\right) \rightarrow H_{i-1}\left(T_{1}\right) \rightarrow \cdots
$$

with the relative homology sequence

$$
\cdots \rightarrow H_{i}\left(T_{1}\right) \rightarrow H_{i}(X) \rightarrow H_{i}\left(X, T_{1}\right) \rightarrow H_{i-1}\left(T_{1}\right) \rightarrow \cdots
$$

finally gives

$$
H_{i}\left(S_{\bullet}^{\mathcal{U}}(X) / S_{\bullet}\left(T_{1}\right)\right) \cong H_{i}\left(X, T_{1}\right)
$$

whence the result in view of (1).

[^0]: ${ }^{1}$ In some nice cases one may identify the groups $H_{i}(X, T)$ with the homology groups of the quotient space X / T (see Hatcher's book) but this is not true in general. However, one may construct a space (the mapping cone of the inclusion map $T \rightarrow X$) whose homology groups equal the $H_{i}(X, T)$; we'll see this later. For the moment we regard the $H_{i}(X, T)$ as purely algebraic constructs.

