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T he power Iin base two

The cardinal 2¥ = |P(v)| satisfies the monotonicity condition
(d1) <y = 20 2¥

together with the inequalities
(d2) NG =2¥ > cof 2 > v

The behaviour of the function v — 2Y on regular cardinal is
completely free apart of the above constraints, namely

Theorem. (Easton) Let F : Reg — Card be a (class) function
satisfying (d1) and (d2). Then it is consistent with ZFC that

2V = F'(v) for all regular cardinals v. ]



T he singular cardinal case
Lemma 1. Put 1(¢) = ¢°°T¢ ang 2<% = sup{2¢ | ¢ < v}. Then

(d3) 2V = (2<)COTV for all cardinals v.

Proof. Let v =Y 0<xVa, With vy <v for a <k <v. Then
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a<K -
Theorem 1. (Buchowski-Hechler) Let v be singular; then
(d4) v <V if E|l£<.V\V/€(KJS§<V$2€:2K)
J(2<¥) otherwise.

Proof. Both cases follow from (d3): if 25 is not eventually con-
stant below v, then cof v = cof 2<%, and (2<¥)COTv — J(2<¥).
if it is not, then (2<¥)COTv — (2r)COTw — pr-COTY — ><v, 0

So the power 2¥ for singular v is determined by the function J on singular
cardinals, together with the power 2% = k* = J(x) of regular cardinals x < v
(in fact 2<¥ = sup{2§+ | £ < v} for singular v).



Cardinal power

The cardinal exponentiation Y satisfies the obvious relations

(el) A<k = N <kK”

(e2) w<v, —=— gt <kKY

(e3) E<k, & >r = '=kK"
together with the strict inequalities

ed cof k¥ > v and (COT & > K

(e4)

It turns out that the gimel function 1(x) = xC°T* completely

determines the cardinal exponentiation.

(But clearly J(k) = k" = 2% for regular k.)



Preliminary lemmata

Lemma 2. Assume that v < cof k and let f : v — k be given. Then there
exists a € k s.t. flv] C o, whence Yk C Uyex Y. Hence

(e5) v<cofn = kY= Z§V§+
E<K
Proof. The range of f cannot be cofinal in k, so it is contained in some
o € k. Then (e5) follows, because |Yo| = |al¥ and ¢+ =|{a||a] =¢}. O

It follows the Hausdorff formula (r1)” = kYxt and in general

(e6) (Npan)" =R R4, for all o and all n
Lemma 3. Let kK be a limit cardinal, and let v > cof k. Then
(e7) v>cofn == k¥ = (supe”)OTr  (k limit)
E<k

Proof. Let Kk = Z”y<COf/-£H'Y' with ky < k for all v < cof k. Then

KV S ( H HV)V — H K//I;/ § (Supgu)COfﬁz § KI/COf/-ﬁ; — <V -
~v<cof ~v<cof <k



Buchowski’s theorem

Theorem 2. (Buchowski)

(e8) k

Proof.

v

\

.

2V

I(k)

()

if K <2Y (in particular if v > k),

if v < cof k and V€ < k (§¥ < k),

if Kk > v > cofk and V€ < k (£Y < k),
otherwise, where ( = min {{ < k | &Y > k}.

(el) gives the first case, (e5) the second case, (e€7) the third case. If neither
of them holds, then {{ <k | & > Kk} # 0, so (el) gives k¥ = (¥, with ¢ > Ng
(otherwise the first case holds). Proceed by induction on k, so the thesis
holds for (: then & < ¢ for all £ < ¢, by minimality of (. Moreover ¢ is not
in the first two cases, because (¥ > k > (, hence necessarily cof ( < v < (,
and ¢¥ = J(¢) by induction hypothesis. O

Remark that the last two cases may occur only when &k, resp. ¢ are singular.



Special hypotheses

Assuming the Generalized Continuum Hypothesis

(GCH) F = kT for all infinite x

all cardinal powers are determined, and assume the least con-

sistent value, namely
K If v <cofk,

Corollary 1 ((GCH)). k" ={xkT if x>v > cofs,
vt ifu > K.

Proof.

By induction on «, by applying Buchowski’'s T heorem. O



GCH being notoriously (almost) totally independent on regular
cardinals, one formulated the Singular Cardinals Hypothesis
(SCH) 2COTw o —»  xCOTk — L+ for all singular
Assuming (SCH), all cardinal powers are determined, and as-
sume the least values consistent with the powes 2¥ of the regular
cardinals v, namely

Corollary 2 ((SCH)).

DV f <2V (in part. if v > k),
(i) for all k,v kYW =<k if v<cofk and 2Y <k,

kt if k>v>cofk and 2V < k.

\

DV if 3k < v 2F = 2<V,

ii) for singular 2V =
(i) J g {(2<V)+ otherwise.



Proof. (i) Again by induction on k, by applying Buchowski’'s

T heorem.

(ii) Apply the Buchowski-Hechler theorem: the first case is im-

mediate, while, when 2% is not eventually constant below v,
. . cofyv

then cof v = cof (2<¥) and so, being v singular and 22 =

2COT v - ><v gCH applies and gives J(2<¥) = (2<¥)+. [



Tarski’s theorem on products

Theorem 3 (Tarski). Let v be an infinite cardinal, and let the
v-sequence of cardinals (ko | @ < v) be weakly increasing, i.e.
s.t. 0<ka < kg fora<p <v. Then
(e9) [T xv = (sup ky)”.
y<v T<v
Proof. Put Kk = SUP~ <y Ky, SO K < [ly<y Ky-
Let P be a partition v in v parts, such that < is the supremum
of the "W on each part X € 'P. Then

< I ey= T TI &5 < I (supry)¥l = ((supry)")” = s"

y<v XEPWEX Xep 7eX YV 0

Remark that the conditions of weak monotonicity and of cardinal length are
always separately satisfiable, but not both together, in general.



Shelah’s pcf theory 10

Let a € Reg be a set of regular cardinals, which we assume to

be an interval [Rqy,Ns5) N Reg of length |a| < Ry. Define
pcf(a) = {cof (Ilkeca k/D) | D ultrafilter on a}, and
pcfula) = U{pcf(d) | b C a,|b] < pu}, for p <al

Lemma 4. For all u < |al:

1. a Cpcfula), and suppcfu(a) < (supa)t,

2. min pcfu(a) = min a.

Proof.

1. For each k € a take the principal ultrafilter generated by {x}.

On the other hand, cof (Iluep k/D) < |Tep k| < (sup b)lbl.
2. All kK € a are regular, hence no sequence in [[xecq k Of length

less than min a can be cofinal modulo D. O



11

The following theorems are the essential part of Shelah's pcf
theory (so their proofs are elementary, but very complicated,

and we omit them).
Let a = [Ny, N5) N Reg and p < |a] < Ry, Then

Theorem 4. pcf,(a) = [Na, Ny] N Reg,
with X, regular > Xg and |v\ o <6\ of”.

Theorem 5. If k¥ < R, for all k < Rq, then N, = N

Theorem 6. |pcf,(a)| < |a|TTT < |§|TFT.



Recall that a = [Rq, N5) N Reg and p < |a] < Ng.

Corollary 3. Let 6 be limit. Then

L
k< N for all kK < Ng — N5 < Noz—l—|pcf(a)|+’

In particular, when X5 is a singular strong limit cardinal, then
N5 — I(N) < N(2|5|)+.

Corollary 4. 1In general, for all limit ordinal §:

I(Rs) < Rsl%l < max |5 ++++ (21°h Ty

12
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Proof of Corollary 3.
The first assertion follows from theorems 4-5, because pcf;(a)
is the interval [Rq, Ng‘]ﬂReg, hence the index v of Ngb IS an ordinal

smaller than |pcfu(a)|™T.

For the second assertion we distinguish four cases:

1. § = Rg then [§]F = RF <R 5+

2. N5 <210 then X =21 < |§|# < R\ 50y+5

3. VY < N5 (kM < Rs): put Re = (|§|#)T, so the first assertion
gives R <R, ccoy+ and [pef(a)]™ < (Ja!)F < (J6])T

4. Ik < N5 (kH > N5): let Ng the least such k, so for Rg case 3.

H — WM
holds, and one gets Ry = Ng < R g+ < Nij5)+-
O
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Proof of Corollary 4.

If X5 < 29 the estimate is obvious.

Otherwise let Ry = (2°)+ < N5 Then put p = |8] and apply
corollary 3, obtaining N?' < Na+\pcf(a)|+-

Now theorem 6 gives |pcf(a) < |a|TTT < |5|TTT, hence

o+ |pef(a)|T < |§|TTTT, because and a < §. O

A remarkable consequence is the stunning estimate

M0 <N, == NSO <R,



