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The power in base two

The cardinal 2ν = |P(ν)| satisfies the monotonicity condition

(d1) µ ≤ ν =⇒ 2µ ≤ 2ν

together with the inequalities

(d2) ℵν0 = 2ν ≥ cof 2ν > ν

The behaviour of the function ν 7→ 2ν on regular cardinal is

completely free apart of the above constraints, namely

Theorem. (Easton) Let F : Reg → Card be a (class) function

satisfying (d1) and (d2). Then it is consistent with ZFC that

2ν = F (ν) for all regular cardinals ν. 2
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The singular cardinal case
Lemma 1. Put (ξ)ג = ξcof ξ and 2<ν = sup{2ξ | ξ < ν}. Then

(d3) 2ν = (2<ν)cof ν for all cardinals ν.

Proof. Let ν =
∑
α<κ να, with να < ν for α < κ ≤ ν. Then

2ν = 2
∑
α<κ να =

∏
α<κ

2να ≤ (2<ν)κ ≤ 2ν·κ = 2ν 2

Theorem 1. (Buchowski-Hechler) Let ν be singular; then

(d4) 2ν =

2<ν if ∃κ < ν ∀ξ (κ ≤ ξ < ν ⇒ 2ξ = 2κ)

(ν>2)ג otherwise.

Proof. Both cases follow from (d3): if 2ξ is not eventually con-

stant below ν, then cof ν = cof 2<ν, and (2<ν)cof ν = ;(ν>2)ג

if it is not, then (2<ν)cof ν = (2κ)cof ν = 2κ·cof ν = 2<ν. 2

So the power 2ν for singular ν is determined by the function ג on singular

cardinals, together with the power 2κ = κκ = (κ)ג of regular cardinals κ < ν

(in fact 2<ν = sup{2ξ+ | ξ < ν} for singular ν).
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Cardinal power

The cardinal exponentiation κν satisfies the obvious relations

(e1) λ ≤ κ =⇒ λν ≤ κν

(e2) µ ≤ ν, =⇒ κµ ≤ κν

(e3) ξ < κ, ξν ≥ κ =⇒ ξν = κν

together with the strict inequalities

(e4) cof κν > ν and κcof κ > κ

It turns out that the gimel function (κ)ג = κcof κ completely

determines the cardinal exponentiation.

(But clearly (κ)ג = κκ = 2κ for regular κ.)

.
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Preliminary lemmata

Lemma 2. Assume that ν < cof κ and let f : ν → κ be given. Then there

exists α ∈ κ s.t. f [ν] ⊆ α, whence νκ ⊆
⋃
α∈κ

να. Hence

(e5) ν < cof κ =⇒ κν =
∑
ξ<κ

ξνξ+

Proof. The range of f cannot be cofinal in κ, so it is contained in some

α ∈ κ. Then (e5) follows, because |να| = |α|ν and ξ+ = |{α | |α| = ξ}|. 2

It follows the Hausdorff formula (κ+)ν = κνκ+ and in general

(e6) (ℵα+n)ν = ℵνα ℵα+n for all α and all n

Lemma 3. Let κ be a limit cardinal, and let ν ≥ cof κ. Then

(e7) ν ≥ cof κ =⇒ κν = (sup
ξ<κ

ξν)cof κ (κ limit)

Proof. Let κ =
∑
γ<cof κ κγ, with κγ < κ for all γ < cof κ. Then

κν ≤ (
∏

γ<cof κ
κγ)ν =

∏
γ<cof κ

κνγ ≤ (sup
ξ<κ

ξν)cof κ ≤ κνcof κ = κν. 2
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Buchowski’s theorem

Theorem 2. (Buchowski)

(e8) κν =



2ν if κ ≤ 2ν (in particular if ν ≥ κ),

κ if ν < cof κ and ∀ξ < κ (ξν ≤ κ),

(κ)ג if κ > ν ≥ cof κ and ∀ξ < κ (ξν < κ),

(ζ)ג otherwise, where ζ = min {ξ < κ | ξν ≥ κ}.

Proof.

(e1) gives the first case, (e5) the second case, (e7) the third case. If neither

of them holds, then {ξ < κ | ξν ≥ κ} 6= ∅, so (e1) gives κν = ζν, with ζ > ℵ0

(otherwise the first case holds). Proceed by induction on κ, so the thesis

holds for ζ: then ξν < ζ for all ξ < ζ, by minimality of ζ. Moreover ζ is not

in the first two cases, because ζν ≥ κ > ζ, hence necessarily cof ζ ≤ ν < ζ,

and ζν = (ζ)ג by induction hypothesis. 2

Remark that the last two cases may occur only when κ, resp. ζ are singular.
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Special hypotheses

Assuming the Generalized Continuum Hypothesis

(GCH) 2κ = κ+ for all infinite κ

all cardinal powers are determined, and assume the least con-

sistent value, namely

Corollary 1 ((GCH)). κν =


κ if ν < cof κ,

κ+ if κ > ν ≥ cof κ,

ν+ if ν ≥ κ.

Proof.

By induction on κ, by applying Buchowski’s Theorem. 2



GCH being notoriously (almost) totally independent on regular

cardinals, one formulated the Singular Cardinals Hypothesis

(SCH) 2cof κ < κ =⇒ κcof κ = κ+ for all singular κ

Assuming (SCH), all cardinal powers are determined, and as-

sume the least values consistent with the powes 2ν of the regular

cardinals ν, namely

Corollary 2 ((SCH)).

(i) for all κ, ν κν =


2ν if κ ≤ 2ν (in part. if ν ≥ κ),

κ if ν < cof κ and 2ν < κ,

κ+ if κ > ν ≥ cof κ and 2ν < κ.

(ii) for singular ν 2ν =

2<ν if ∃κ < ν 2κ = 2<ν,

(2<ν)+ otherwise.



Proof. (i) Again by induction on κ, by applying Buchowski’s

Theorem.

(ii) Apply the Buchowski-Hechler theorem: the first case is im-

mediate, while, when 2κ is not eventually constant below ν,

then cof ν = cof (2<ν) and so, being ν singular and 22cof ν
=

2cof ν < 2<ν, SCH applies and gives (ν>2)ג = (2<ν)+. 2
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Tarski’s theorem on products

Theorem 3 (Tarski). Let ν be an infinite cardinal, and let the

ν-sequence of cardinals 〈κα | α < ν〉 be weakly increasing, i.e.

s.t. 0 < κα ≤ κβ for α < β < ν. Then

(e9)
∏
γ<ν

κγ = (sup
γ<ν

κγ)ν.

Proof. Put κ = supγ<ν κγ, so κ ≤ ∏
γ<ν κγ.

Let P be a partition ν in ν parts, such that κ is the supremum

of the κγ on each part X ∈ P. Then

κν ≤
∏
γ<ν

κνγ =
∏
X∈P

∏
γ∈X

κνγ ≤
∏
X∈P

(sup
γ∈X

κγ)|X| = ((sup
γ<ν

κγ)ν)ν = κν

2

Remark that the conditions of weak monotonicity and of cardinal length are
always separately satisfiable, but not both together, in general.
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Let a ⊆ Reg be a set of regular cardinals, which we assume to

be an interval [ℵα,ℵδ) ∩Reg of length |a| < ℵα. Define

pcf(a) = {cof (
∏
κ∈a κ/D) | D ultrafilter on a}, and

pcfµ(a) =
⋃{pcf(b) | b ⊆ a, |b| ≤ µ}, for µ ≤ |a|

Lemma 4. For all µ ≤ |a|:
1. a ⊆ pcfµ(a), and sup pcfµ(a) ≤ (sup a)µ;

2. min pcfµ(a) = min a.

Proof.

1. For each κ ∈ a take the principal ultrafilter generated by {κ}.

On the other hand, cof (
∏
κ∈b κ/D) ≤ |∏κ∈b κ| ≤ (sup b)|b|.

2. All κ ∈ a are regular, hence no sequence in
∏
κ∈a κ of length

less than min a can be cofinal modulo D. 2
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The following theorems are the essential part of Shelah’s pcf

theory (so their proofs are elementary, but very complicated,

and we omit them).

Let a = [ℵα,ℵδ) ∩Reg and µ ≤ |a| < ℵα. Then

Theorem 4. pcfµ(a) = [ℵα,ℵγ] ∩Reg,

with ℵγ regular ≥ ℵδ and |γ \ α| ≤ |δ \ α|µ.

Theorem 5. If κµ < ℵα for all κ < ℵα, then ℵγ = ℵµδ .

Theorem 6. |pcfµ(a)| ≤ |a|+++ ≤ |δ|+++.
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Recall that a = [ℵα,ℵδ) ∩Reg and µ ≤ |a| < ℵα.

Corollary 3. Let δ be limit. Then

κµ < ℵα for all κ < ℵα =⇒ ℵµδ < ℵα+|pcf(a)|+,

hence µ < ℵδ =⇒ ℵµδ < ℵ(|δ|µ)+.

In particular, when ℵδ is a singular strong limit cardinal, then

2ℵδ = (ℵδ)ג < ℵ(2|δ|)+.

Corollary 4. In general, for all limit ordinal δ:

(ℵδ)ג ≤ ℵδ|δ| < max {ℵ|δ|++++, (2|δ|)+}



13

Proof of Corollary 3.

The first assertion follows from theorems 4-5, because pcfµ(a)

is the interval [ℵα,ℵµδ ]∩Reg, hence the index γ of ℵµδ is an ordinal

smaller than |pcfµ(a)|+.

For the second assertion we distinguish four cases:

1. δ = ℵδ: then |δ|µ = ℵµδ < ℵ(|δ|µ)+;

2. ℵδ ≤ 2|δ|: then ℵµδ = 2µ ≤ |δ|µ < ℵ(|δ|µ)+;

3. ∀κ < ℵδ (κµ < ℵδ): put ℵα = (|δ|µ)+, so the first assertion

gives ℵµδ < ℵα+|pcf(a)|+, and |pcf(a)|+ ≤ (|a|µ)+ ≤ (|δ|µ)+;

4. ∃κ < ℵδ (κµ ≥ ℵδ): let ℵβ the least such κ, so for ℵβ case 3.

holds, and one gets ℵµδ = ℵµβ < ℵ(|β|µ)+ ≤ ℵ(|δ|µ)+.

2
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Proof of Corollary 4.

If ℵδ ≤ 2δ the estimate is obvious.

Otherwise let ℵα = (2|δ|)+ < ℵδ.Then put µ = |δ| and apply

corollary 3, obtaining ℵ|δ|δ < ℵα+|pcf(a)|+.

Now theorem 6 gives |pcf(a) ≤ |a|+++ ≤ |δ|+++, hence

α+ |pcf(a)|+ ≤ |δ|++++, because and α < δ. 2

A remarkable consequence is the stunning estimate

2ℵ0 < ℵω =⇒ ℵωℵ0 < ℵω4


