References

- 1. T. Jech Set theory, Academic Press 1978: Ch. I. 6, 8
- 2. M. Holz, K. Steffens and E. Weitz *Introduction to Cardinal Arithmetic* Birkhäuser 1999: 1.6-7, 6.2, 7.2, 8.1, 9.1-2

The power in base two

The cardinal $2^{\nu} = |\mathcal{P}(\nu)|$ satisfies the monotonicity condition

$$(d1) \qquad \qquad \mu \leq \nu \implies 2^{\mu} \leq 2^{\nu}$$

together with the inequalities

$$(d2) \qquad \qquad \aleph_0^\nu = 2^\nu \ge \operatorname{cof} 2^\nu > \nu$$

The behaviour of the function $\nu \mapsto 2^{\nu}$ on regular cardinal is completely free apart of the above constraints, namely **Theorem.** (*Easton*) Let $F : Reg \to Card$ be a (class) function satisfying (d1) and (d2). Then it is consistent with ZFC that $2^{\nu} = F(\nu)$ for all regular cardinals ν .

The singular cardinal case

Lemma 1. Put $\exists (\xi) = \xi^{\operatorname{cof} \xi}$ and $2^{<\nu} = \sup\{2^{\xi} \mid \xi < \nu\}$. Then (d3) $2^{\nu} = (2^{<\nu})^{\operatorname{cof} \nu}$ for all cardinals ν .

Proof. Let $\nu = \sum_{\alpha < \kappa} \nu_{\alpha}$, with $\nu_{\alpha} < \nu$ for $\alpha < \kappa \leq \nu$. Then

$$2^{\nu} = 2^{\sum_{\alpha < \kappa} \nu_{\alpha}} = \prod_{\alpha < \kappa} 2^{\nu_{\alpha}} \le (2^{<\nu})^{\kappa} \le 2^{\nu \cdot \kappa} = 2^{\nu}$$

Theorem 1. (Buchowski-Hechler) Let ν be singular; then

(d4) $2^{\nu} = \begin{cases} 2^{<\nu} & \text{if } \exists \kappa < \nu \ \forall \xi \ (\kappa \le \xi < \nu \Rightarrow 2^{\xi} = 2^{\kappa}) \\ \exists (2^{<\nu}) & \text{otherwise.} \end{cases}$

Proof. Both cases follow from (d3): if 2^{ξ} is not eventually constant below ν , then cof $\nu = \operatorname{cof} 2^{<\nu}$, and $(2^{<\nu})^{\operatorname{cof} \nu} = \operatorname{J}(2^{<\nu})$; if it is not, then $(2^{<\nu})^{\operatorname{cof} \nu} = (2^{\kappa})^{\operatorname{cof} \nu} = 2^{\kappa \cdot \operatorname{Cof} \nu} = 2^{<\nu}$. \Box So the power 2^{ν} for singular ν is determined by the function J on singular

cardinals, together with the power $2^{\kappa} = \kappa^{\kappa} = \mathbb{I}(\kappa)$ of regular cardinals $\kappa < \nu$ (in fact $2^{<\nu} = \sup\{2^{\xi^+} | \xi < \nu\}$ for singular ν).

Cardinal power

The cardinal exponentiation κ^{ν} satisfies the obvious relations

It turns out that the *gimel* function $\exists (\kappa) = \kappa^{\text{COf } \kappa}$ completely determines the cardinal exponentiation.

(But clearly $\exists(\kappa) = \kappa^{\kappa} = 2^{\kappa}$ for regular κ .)

Preliminary lemmata

Lemma 2. Assume that $\nu < \operatorname{cof} \kappa$ and let $f : \nu \to \kappa$ be given. Then there exists $\alpha \in \kappa$ s.t. $f[\nu] \subseteq \alpha$, whence ${}^{\nu}\kappa \subseteq \bigcup_{\alpha \in \kappa} {}^{\nu}\alpha$. Hence

(e5)
$$\nu < \operatorname{cof} \kappa \implies \kappa^{\nu} = \sum_{\xi < \kappa} \xi^{\nu} \xi^{+}$$

Proof. The range of f cannot be cofinal in κ , so it is contained in some $\alpha \in \kappa$. Then (e5) follows, because $|^{\nu}\alpha| = |\alpha|^{\nu}$ and $\xi^+ = |\{\alpha \mid |\alpha| = \xi\}|$. \Box

It follows the Hausdorff formula $(\kappa^+)^{\nu} = \kappa^{\nu} \kappa^+$ and in general

(e6)
$$(\aleph_{\alpha+n})^{\nu} = \aleph_{\alpha}^{\nu} \aleph_{\alpha+n}$$
 for all α and all n

Lemma 3. Let κ be a limit cardinal, and let $\nu \geq cof \kappa$. Then

(e7)
$$\nu \ge \operatorname{cof} \kappa \implies \kappa^{\nu} = (\sup_{\xi < \kappa} \xi^{\nu})^{\operatorname{cof} \kappa} \quad (\kappa \ limit)$$

Proof. Let $\kappa = \sum_{\gamma < \text{cof } \kappa} \kappa_{\gamma}$, with $\kappa_{\gamma} < \kappa$ for all $\gamma < \text{cof } \kappa$. Then

$$\kappa^{\nu} \leq (\prod_{\gamma < \mathsf{cof} \ \kappa} \kappa_{\gamma})^{\nu} = \prod_{\gamma < \mathsf{cof} \ \kappa} \kappa^{\nu}_{\gamma} \leq (\sup_{\xi < \kappa} \xi^{\nu})^{\mathsf{cof} \ \kappa} \leq \kappa^{\nu \mathsf{cof} \ \kappa} = \kappa^{\nu}.$$

Buchowski's theorem

Theorem 2. (Buchowski)

$$(e8) \quad \kappa^{\nu} = \begin{cases} 2^{\nu} & \text{if } \kappa \leq 2^{\nu} \quad (\text{in particular if } \nu \geq \kappa), \\ \kappa & \text{if } \nu < \operatorname{cof} \kappa \text{ and } \forall \xi < \kappa \, (\xi^{\nu} \leq \kappa), \\ \exists (\kappa) & \text{if } \kappa > \nu \geq \operatorname{cof} \kappa \text{ and } \forall \xi < \kappa \, (\xi^{\nu} < \kappa), \\ \exists (\zeta) & \text{otherwise, where } \zeta = \min \{\xi < \kappa \mid \xi^{\nu} \geq \kappa\}. \end{cases}$$

Proof.

(e1) gives the first case, (e5) the second case, (e7) the third case. If neither of them holds, then $\{\xi < \kappa \mid \xi^{\nu} \ge \kappa\} \neq \emptyset$, so (e1) gives $\kappa^{\nu} = \zeta^{\nu}$, with $\zeta > \aleph_0$ (otherwise the first case holds). Proceed by induction on κ , so the thesis holds for ζ : then $\xi^{\nu} < \zeta$ for all $\xi < \zeta$, by minimality of ζ . Moreover ζ is not in the first two cases, because $\zeta^{\nu} \ge \kappa > \zeta$, hence necessarily cof $\zeta \le \nu < \zeta$, and $\zeta^{\nu} = J(\zeta)$ by induction hypothesis.

Remark that the last two cases may occur only when κ , resp. ζ are singular.

Special hypotheses

Assuming the Generalized Continuum Hypothesis

(GCH) $2^{\kappa} = \kappa^+$ for all infinite κ

all cardinal powers are determined, and assume the least consistent value, namely

Corollary 1 ((GCH)).
$$\kappa^{\nu} = \begin{cases} \kappa & \text{if } \nu < \operatorname{cof} \kappa, \\ \kappa^{+} & \text{if } \kappa > \nu \ge \operatorname{cof} \kappa, \\ \nu^{+} & \text{if } \nu \ge \kappa. \end{cases}$$

Proof.

By induction on κ , by applying Buchowski's Theorem.

GCH being notoriously (almost) totally independent on regular cardinals, one formulated the **Singular Cardinals Hypothesis** (SCH) $2^{\text{Cof }\kappa} < \kappa \implies \kappa^{\text{Cof }\kappa} = \kappa^+$ for all singular κ Assuming (SCH), all cardinal powers are determined, and assume the least values consistent with the powes 2^{ν} of the regular cardinals ν , namely

Corollary 2 ((SCH)).
(i) for all
$$\kappa, \nu$$
 $\kappa^{\nu} = \begin{cases} 2^{\nu} & \text{if } \kappa \leq 2^{\nu} \text{ (in part. if } \nu \geq \kappa), \\ \kappa & \text{if } \nu < \operatorname{cof} \kappa \text{ and } 2^{\nu} < \kappa, \\ \kappa^{+} & \text{if } \kappa > \nu \geq \operatorname{cof} \kappa \text{ and } 2^{\nu} < \kappa. \end{cases}$

(ii) for singular ν $2^{\nu} = \begin{cases} 2^{<\nu} & \text{if } \exists \kappa < \nu \ 2^{\kappa} = 2^{<\nu}, \\ (2^{<\nu})^+ & \text{otherwise.} \end{cases}$

Proof. (i) Again by induction on κ , by applying Buchowski's Theorem.

(ii) Apply the Buchowski-Hechler theorem: the first case is immediate, while, when 2^{κ} is not eventually constant below ν , then cof $\nu = \text{cof}(2^{<\nu})$ and so, being ν singular and $2^{2^{\text{Cof}\nu}} = 2^{\text{cof}\nu} < 2^{<\nu}$, SCH applies and gives $\exists (2^{<\nu}) = (2^{<\nu})^+$.

Tarski's theorem on products

Theorem 3 (Tarski). Let ν be an infinite cardinal, and let the ν -sequence of cardinals $\langle \kappa_{\alpha} \mid \alpha < \nu \rangle$ be weakly increasing, i.e. s.t. $0 < \kappa_{\alpha} \leq \kappa_{\beta}$ for $\alpha < \beta < \nu$. Then

(e9)
$$\prod_{\gamma < \nu} \kappa_{\gamma} = (\sup_{\gamma < \nu} \kappa_{\gamma})^{\nu}$$

Proof. Put $\kappa = \sup_{\gamma < \nu} \kappa_{\gamma}$, so $\kappa \leq \prod_{\gamma < \nu} \kappa_{\gamma}$.

Let \mathcal{P} be a partition ν in ν parts, such that κ is the supremum of the κ_{γ} on each part $X \in \mathcal{P}$. Then

$$\kappa^{\nu} \leq \prod_{\gamma < \nu} \kappa^{\nu}_{\gamma} = \prod_{X \in \mathcal{P}} \prod_{\gamma \in X} \kappa^{\nu}_{\gamma} \leq \prod_{X \in \mathcal{P}} (\sup_{\gamma \in X} \kappa_{\gamma})^{|X|} = ((\sup_{\gamma < \nu} \kappa_{\gamma})^{\nu})^{\nu} = \kappa^{\nu}$$

Remark that the conditions of *weak monotonicity* and of *cardinal length* are always separately satisfiable, but not both together, in general.

Shelah's pcf theory

Let $a \subseteq Reg$ be a set of regular cardinals, which we assume to be an interval $[\aleph_{\alpha}, \aleph_{\delta}) \cap Reg$ of length $|a| < \aleph_{\alpha}$. Define $pcf(a) = \{ cof(\prod_{\kappa \in a} \kappa/\mathcal{D}) \mid \mathcal{D} \ ultrafilter \ on \ a \}, and$ $pcf_{\mu}(a) = \bigcup \{ pcf(b) \mid b \subseteq a, |b| \leq \mu \}, \text{ for } \mu \leq |a| \}$ Lemma 4. For all $\mu \leq |a|$:

- 1. $a \subseteq pcf_{\mu}(a)$, and $\sup pcf_{\mu}(a) \leq (\sup a)^{\mu}$;
- 2. min $pcf_{\mu}(a) = \min a$.

Proof.

- 1. For each $\kappa \in a$ take the principal ultrafilter generated by $\{\kappa\}$. On the other hand, cof $(\prod_{\kappa \in b} \kappa / \mathcal{D}) \leq |\prod_{\kappa \in b} \kappa| \leq (\sup b)^{|b|}$.
- 2. All $\kappa \in a$ are regular, hence no sequence in $\prod_{\kappa \in a} \kappa$ of length less than min a can be cofinal modulo \mathcal{D} .

The following theorems are the essential part of Shelah's pcf theory (so their proofs are elementary, but very complicated, and we omit them).

Let
$$a = [\aleph_{\alpha}, \aleph_{\delta}) \cap Reg$$
 and $\mu \leq |a| < \aleph_{\alpha}$. Then

Theorem 4. $pcf_{\mu}(a) = [\aleph_{\alpha}, \aleph_{\gamma}] \cap Reg,$ with \aleph_{γ} regular $\geq \aleph_{\delta}$ and $|\gamma \setminus \alpha| \leq |\delta \setminus \alpha|^{\mu}$.

Theorem 5. If $\kappa^{\mu} < \aleph_{\alpha}$ for all $\kappa < \aleph_{\alpha}$, then $\aleph_{\gamma} = \aleph_{\delta}^{\mu}$.

Theorem 6. $|pcf_{\mu}(a)| \le |a|^{+++} \le |\delta|^{+++}$.

Recall that $a = [\aleph_{\alpha}, \aleph_{\delta}) \cap Reg$ and $\mu \leq |a| < \aleph_{\alpha}$.

Corollary 3. Let δ be limit. Then

hence

$$\kappa^{\mu} < \aleph_{\alpha} \text{ for all } \kappa < \aleph_{\alpha} \implies \aleph_{\delta}^{\mu} < \aleph_{\alpha+|pcf(\alpha)|^{+}},$$
$$\mu < \aleph_{\delta} \implies \aleph_{\delta}^{\mu} < \aleph_{(|\delta|^{\mu})^{+}}.$$

In particular, when \aleph_{δ} is a singular strong limit cardinal, then $2^{\aleph_{\delta}} = \beth(\aleph_{\delta}) < \aleph_{(2^{|\delta|})^{+}}.$

Corollary 4. In general, for all limit ordinal δ :

$$\exists (\aleph_{\delta}) \leq \aleph_{\delta}^{|\delta|} < \max \{\aleph_{|\delta|++++}, (2^{|\delta|})^+\}$$

Proof of Corollary 3.

The first assertion follows from theorems 4-5, because $pcf_{\mu}(a)$ is the interval $[\aleph_{\alpha}, \aleph_{\delta}^{\mu}] \cap Reg$, hence the index γ of \aleph_{δ}^{μ} is an ordinal smaller than $|pcf_{\mu}(a)|^+$.

For the second assertion we distinguish four cases:

Proof of Corollary 4.

If $\aleph_{\delta} \leq 2^{\delta}$ the estimate is obvious.

Otherwise let $\aleph_{\alpha} = (2^{|\delta|})^+ < \aleph_{\delta}$. Then put $\mu = |\delta|$ and apply corollary 3, obtaining $\aleph_{\delta}^{|\delta|} < \aleph_{\alpha+|pcf(a)|^+}$. Now theorem 6 gives $|pcf(a) < |a|^{+++} < |\delta|^{+++}$, hence

 $\alpha + |pcf(\alpha)|^+ \le |\delta|^{++++}$, because and $\alpha < \delta$.

A remarkable consequence is the stunning estimate

$$2^{\aleph_0} < \aleph_\omega \implies \aleph_\omega^{\aleph_0} < \aleph_{\omega_4}$$