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Reflexion principle

A set (or class) M reflects the formula ¢ (with the variables

x1,...,xn free) if for all aq,...,an € M

M = ¢lay,...,an] <= o(aq,...,an) is true (in V)

Equivalently Vaq,...,an € M(d[aq,...,an] <= oMaq,...,an]),

where ¢M is obtained from ¢ by restricting all quantifiers to M.

Theorem (Montague-Levy). For all formula ¢ with x1,...,xn
free, and all ordinal «, there exists g > « s.t. Vi reflects ¢.
Corollary. For all A there exists M O A s.t. | M| < max (|A],RNp),
that reflects ¢.

Corollary. On can reflect simultaneously any finite set of for-

mulas (but not, in general, an infinite set).
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Proof. Write ¢ = Q1vy1 ... Qmuym W (y1,...,Ym;x1,...,2Tn)) in prenex
form, let ¢r = Qr41Yr+41--- Qmym (¥ (Y1, -, Ym;T1,...,Tn)), and

put

gr@' T) — min {5 > o ‘ Elyrgb"“(g; T) — (Elyr = V5)¢T(?rf)} it Q?“ =
| min {6 > a | ~Vyrér (7, ) — Fyr € V5)or (7, 2) }if Qr =V

f1(v) = max 1<,<pm(supl{gr(y;z) |y, € V4} + 1),

1) = (), fw(y) = suppcy, fn(7).
Then gr(y;7) < fu(y) for all r and all y,z € V¢ (), hence

Qryr(dr (D) == (Qrur € Vp () (6r7*D) (5 7).
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Now the formula ¢ = ¢, has no quantifiers, hence ¢,, = fm;f“(”),

and so, descending by induction on r from m to O, one gets
%

that ¢, <— & for m >r > 0.

Finally ¢qg is ¢, and by putting 8 = f,(«a), one obtains
Vaqi,...,an € Vﬁ (gb[al,...,an] <~ ¢V5[a1,...,an]), O



Levy’s theorem
Theorem (Levy). Let ¢ be a > q-formula with x,x1,...,xzy free,

and let k be an uncountable cardinal. Then for all aq, ...,an€ H(k)
Jz (¢(z,a1,...,an)) == 3z € H(k)(P(z,a1,...,an)).

Corollary . Any term that ‘“increases cardinality” (like P(x),

N(z),Yx) cannot be X{FC.

Proof. Remark that we may assume w.l.o.g. that k = uT is a

successor cardinal, because, if k is a limit cardinal, then
ai,...,an€H(k) < 3Ju<k(ay,...,ancH(uT)).

Moreover we may assume that the formula ¢ is 2o, because, if

¢ is Jy (Y(y,x,T) with 1 € >, then

dx ¢(x,a) < Jz (z = {x,y} NY(y,xz,a)),and zeH (k) = x,y€H (k).



Now assume that given a1,...,an € H(x) there exists a s.t.
#(a,a). Put B= {a}UTC{ay,...,an}), so |B| < k, and pick S
s.t. Vg 2 B and reflects ¢, so Vg = o(a,a). Close the set B

under a countable family of Skolem functions for Vﬁ, to get an
elementary submodel C of V3 of size |C] = |B|-Ng < &.

Let # : C — T be the Mostowski collapse (that works be-
cause the structure (C, €cxc) is extensional and wellfounded):
then T € H(k), TITC({q;}) 1S the identity, hence a; € T, and
T = ¢(w(a),a). Finally, ¢ € X is absolute for transitive mod-

els, hence w(a) is the wanted element of H(k). O
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Godel-Bernays class theory GB
Same language {€} of ZF, intended objects are classes (denoted

by capitals); sets (usually denoted by lower case letters) are

those classes that belong to some class: Set(x) < IX(x € X).
The finite set of axioms of GB consists of five groups:

A. General axioms
A.l Extensionality: Ve(r € A x € B) =— A= B)
A.2 Pair: Vr,y3dz (z = {x,y}).
B. Class axioms:
B.1 Membership: 3FE = {(x,y) | x € y};
B.2 Intersection: VA, BdC' = AN B;
B.3 (Absolute) Complement: VAIB=V\A={z |z & A};
B.4 Cartesian Product: VAIdB=AxV ={(x,y) |z € A};
B.5 Domain: VAIdB =dom A = {z | y (z,y) € A};



B.6 Cyclic Permutation: VA3IdB = {(x,y,2) | (y,2,x2) € A};

B.7 Transposition: VAIdB = {(z,y,2) | (z,z,y) € A}.
C. Set axioms:

C.1 Infinite: 3z (W ez AVy(ly ez = yU {y} € z));

C.2 Union: Vx(Uz={z|dyecz(z€y)} e V),

C.3 Powerset: Ve (P(x) ={y |y Cz} e V);

C.4 Image: F univalent = Ve (Flx] ={t|3s € x((s,t) € F)}eV);
N.B.UX,P(X), F[X] exist for any class X, but may be proper.
D. Foundation: VX #03dz € X (zNX = 0).

E. Universal Choice: IF :V — VVx £ 0(F(z) € z).
Theorem. Let ¢ be a formula with all quantifiers| restricted to

V', whose free variables are among x4, ...,xn, X1,...,Xm. then,

for all Aq,...,Am, there exists the class
{(331, “ .. ,xn) | Qb(xl, “ . ,ZCn,Al, “ e ,Am)}



GB vs. ZF

Clearly ABCD VRV = ZF, and ABCDE RV = ZFC.

More interesting is the followuing

Theorem . The theories ABCD and ABCDE are consevative

extensions of ZF and ZFC, respectively, i.e. they prove exactly

the same theorems that involve only sets.

Proof. Let 9t = (M, R) be a model of ZF, and add to M all
subsets of M obtained by taking M for V, R for E, and closing
under the operations B.2-B.7. Identify the element z € M with
the “class” {t € M | tEx}. then one obtains a model 91 of ABCD
with exactly the same sets as M.

It follows that if M = ZFC, then 91 = AC, but not necessarily

full GB, because E postulates a proper class function: only by

forcing one gets a suitable generic extension 9 = N[G] = E.
O




