References

1. T. Jech - Set theory, Academic Press 1978: Ch. II. 10-14
2. F. Drake - Set theory, North Holland 1974: Ch. III-IV
3. C. C. Chang, H. J. Keisler - Model Theory, Elsevier 1998: 1.3, 2.1

Reflexion principle

A set (or class) M reflects the formula ϕ (with the variables x_{1}, \ldots, x_{n} free) if for all $a_{1}, \ldots, a_{n} \in M$

$$
M \models \phi\left[a_{1}, \ldots, a_{n}\right] \quad \Longleftrightarrow \quad \phi\left(a_{1}, \ldots, a_{n}\right) \text { is true }(\text { in } V)
$$

Equivalently $\forall a_{1}, \ldots, a_{n} \in M\left(\phi\left[a_{1}, \ldots, a_{n}\right] \Longleftrightarrow \phi^{M}\left[a_{1}, \ldots, a_{n}\right]\right)$, where ϕ^{M} is obtained from ϕ by restricting all quantifiers to M.

Theorem (Montague-Levy). For all formula ϕ with x_{1}, \ldots, x_{n} free, and all ordinal α, there exists $\beta>\alpha$ s.t. V_{β} reflects ϕ.
Corollary. For all A there exists $M \supseteq A$ s.t. $|M| \leq \max \left(|A|, \aleph_{0}\right)$, that reflects ϕ.

Corollary. On can reflect simultaneously any finite set of formulas (but not, in general, an infinite set).

Proof. Write $\phi \equiv Q_{1} y_{1} \ldots Q_{m} y_{m}\left(\psi\left(y_{1}, \ldots, y_{m} ; x_{1}, \ldots, x_{n}\right)\right)$ in prenex form, let $\phi_{r} \equiv Q_{r+1} y_{r+1} \ldots Q_{m} y_{m}\left(\psi\left(y_{1}, \ldots, y_{m} ; x_{1}, \ldots, x_{n}\right)\right)$, and put
 $f_{1}(\gamma)=\max _{1 \leq r \leq m}\left(\sup \left\{g_{r}(\bar{y} ; \bar{x}) \mid \bar{y}, \bar{x} \in V_{\gamma}\right\}+1\right)$,
$f_{h+1}(\gamma)=f_{1}\left(f_{h}(\gamma)\right), \quad f_{\omega}(\gamma)=\sup _{h<\omega} f_{h}(\gamma)$.
Then $g_{r}(\bar{y} ; \bar{x})<f_{\omega}(\gamma)$ for all r and all $\bar{y}, \bar{x} \in V_{f_{\omega}(\gamma)}$, hence

$$
\left.Q_{r} y_{r}\left(\phi_{r}(\bar{y} ; \bar{x})\right) \Longleftrightarrow\left(Q_{r} y_{r} \in V_{f_{\omega}(\gamma)}\right)\left(\phi_{r}^{V_{f \omega}(\gamma)}\right)(\bar{y} ; \bar{x})\right) .
$$

Now the formula $\psi=\phi_{m}$ has no quantifiers, hence $\phi_{m} \equiv \phi_{m}^{V_{f \omega}(\gamma)}$, and so, descending by induction on r from m to 0 , one gets that $\phi_{r} \Longleftrightarrow \phi_{r}^{V_{f \omega}(\gamma)}$ for $m \geq r \geq 0$.
Finally ϕ_{0} is ϕ, and by putting $\beta=f_{\omega}(\alpha)$, one obtains

$$
\forall a_{1}, \ldots, a_{n} \in V_{\beta}\left(\phi\left[a_{1}, \ldots, a_{n}\right] \Longleftrightarrow \phi^{V_{\beta}}\left[a_{1}, \ldots, a_{n}\right]\right),
$$

Levy's theorem

Theorem (Levy). Let ϕ be a Σ_{1}-formula with x, x_{1}, \ldots, x_{n} free, and let κ be an uncountable cardinal.Then for all $a_{1}, \ldots, a_{n} \in H(\kappa)$

$$
\exists x\left(\phi\left(x, a_{1}, \ldots, a_{n}\right)\right) \Longrightarrow \exists x \in H(\kappa)\left(\phi\left(x, a_{1}, \ldots, a_{n}\right)\right) .
$$

Corollary. Any term that "increases cardinality" (like $\mathcal{P}(x)$, $\left.\aleph(x),{ }^{y} x\right)$ cannot be $\Sigma_{1}^{Z F C}$.
Proof. Remark that we may assume w.l.o.g. that $\kappa=\mu^{+}$is a successor cardinal, because, if κ is a limit cardinal, then

$$
a_{1}, \ldots, a_{n} \in H(\kappa) \Longleftrightarrow \exists \mu<\kappa\left(a_{1}, \ldots, a_{n} \in H\left(\mu^{+}\right)\right) .
$$

Moreover we may assume that the formula ϕ is Σ_{0}, because, if ϕ is $\exists y\left(\psi(y, x, \bar{x})\right.$ with $\psi \in \Sigma_{0}$, then
$\exists x \phi(x, \bar{a}) \Leftrightarrow \exists z(z=\{x, y\} \wedge \psi(y, x, \bar{a}))$, and $z \in H(\kappa) \Rightarrow x, y \in H(\kappa)$.

Now assume that given $a_{1}, \ldots, a_{n} \in H(\kappa)$ there exists a s.t. $\phi(a, \bar{a})$. Put $B=\{a\} \cup T C\left(\left\{a_{1}, \ldots, a_{n}\right\}\right)$, so $|B|<\kappa$, and pick β s.t. $V_{\beta} \supseteq B$ and reflects ϕ, so $V_{\beta} \models \phi(a, \bar{a})$. Close the set B under a countable family of Skolem functions for V_{β}, to get an elementary submodel C of V_{β} of size $|C|=|B| \cdot \aleph_{0}<\kappa$.
Let $\pi: C \rightarrow T$ be the Mostowski collapse (that works because the structure ($C, \in_{\mid C \times C}$) is extensional and wellfounded): then $T \in H(\kappa), \pi_{\mid T C\left(\left\{a_{i}\right\}\right)}$ is the identity, hence $a_{i} \in T$, and $T \models \phi(\pi(a), \bar{a})$. Finally, $\phi \in \Sigma_{0}$ is absolute for transitive models, hence $\pi(a)$ is the wanted element of $H(\kappa)$.

Gödel-Bernays class theory GB

Same language $\{\in\}$ of ZF, intended objects are classes (denoted by capitals); sets (usually denoted by lower case letters) are those classes that belong to some class: $\operatorname{Set}(x) \Leftrightarrow \exists X(x \in X)$. The finite set of axioms of GB consists of five groups:
A. General axioms
A. 1 Extensionality: $\forall x(x \in A \Leftrightarrow x \in B) \Longrightarrow A=B)$
A. 2 Pair: $\forall x, y \exists z(z=\{x, y\})$.
B. Class axioms:
B. 1 Membership: $\exists E=\{(x, y) \mid x \in y\}$;
B. 2 Intersection: $\forall A, B \exists C=A \cap B$;
B. 3 (Absolute) Complement: $\forall A \exists B=V \backslash A=\{x \mid x \notin A\}$;
B. 4 Cartesian Product: $\forall A \exists B=A \times V=\{(x, y) \mid x \in A\}$;
B. 5 Domain: $\forall A \exists B=\operatorname{dom} A=\{x \mid \exists y(x, y) \in A\}$;
B. 6 Cyclic Permutation: $\forall A \exists B=\{(x, y, z) \mid(y, z, x) \in A\}$;
B. 7 Transposition: $\forall A \exists B=\{(x, y, z) \mid(x, z, y) \in A\}$.
C. Set axioms:
C. 1 Infinite: $\exists x(\emptyset \in x \wedge \forall y(y \in x \Rightarrow y \cup\{y\} \in x)$);
C. 2 Union: $\forall x(\cup x=\{z \mid \exists y \in x(z \in y)\} \in V)$;
C. 3 Powerset: $\forall x(\mathcal{P}(x)=\{y \mid y \subseteq x\} \in V)$;
C. 4 Image: F univalent $\Rightarrow \forall x(F[x]=\{t \mid \exists s \in x((s, t) \in F)\} \in V)$; N.B. $\cup X, \mathcal{P}(X), F[X]$ exist for any class X, but may be proper.
D. Foundation: $\forall X \neq \emptyset \exists x \in X(x \cap X=\emptyset)$.
E. Universal Choice: $\exists F: V \rightarrow V \forall x \neq \emptyset(F(x) \in x)$.

Theorem. Let ϕ be a formula with all quantifiersl restricted to V, whose free variables are among $x_{1}, \ldots, x_{n}, X_{1}, \ldots, X_{m}$: then, for all A_{1}, \ldots, A_{m}, there exists the class

$$
\left\{\left(x_{1}, \ldots, x_{n}\right) \mid \phi\left(x_{1}, \ldots, x_{n}, A_{1}, \ldots, A_{m}\right)\right\} .
$$

GB vs. ZF
Clearly $A B C D \vdash V \models \mathrm{ZF}$, and $A B C D E \vdash V \models \mathrm{ZFC}$.
More interesting is the followuing
Theorem. The theories $A B C D$ and $A B C D E$ are consevative extensions of ZF and ZFC, respectively, i.e. they prove exactly the same theorems that involve only sets.
Proof. Let $\mathfrak{M}=(M, R)$ be a model of ZF , and add to M all subsets of M obtained by taking M for V, R for E, and closing under the operations B.2-B.7. Identify the element $x \in M$ with the "class" $\{t \in M \mid t E x\}$: then one obtains a model \mathfrak{N} of ABCD with exactly the same sets as M.
It follows that if $\mathfrak{M} \models \mathrm{ZFC}$, then $\mathfrak{N}=A C$, but not necessarily full GB , because E postulates a proper class function: only by forcing one gets a suitable generic extension $\mathfrak{N}^{\prime}=\mathfrak{N}[G] \vDash E$.

