References

1. T. Jech - Set theory, Academic Press 1978: Ch. III. 18

Boolean Models

Let U be a transitive set (or class), and let B be a *complete Boolean algebra*. A *Boolean model* of set theory with universe U and values in B is a 4-tuple (U,B;I,E) where the evaluating functions $I,E:U^2\to B$ assign values $I(x,y)=\parallel x=y\parallel_B\in B$ and $E(x,y)=\parallel x=y\parallel_B\in B$ to the atomic formulae x=y and $x\in y$, resp., subject to the following conditions, for all $x,y,z,v,w\in U$:

- 1. $|| x = x ||_B = 1$;
- 2. $||x = y||_B = ||y = x||_B$;
- 3. $||x = y||_B \cdot ||y = z||_B \le ||x = z||_B$;
- 4. $||x \in y||_{B} \cdot ||v = x||_{B} \cdot ||w = y||_{B} \le ||v \in w||_{B}$.

(Usually the subscript B is omitted.)

Evaluating formulae

By induction on the generation of ϕ , for $(\overline{x}) \in U^n$ put:

- $\bullet \parallel \neg \phi(\overline{x}) \parallel_B = \parallel \phi(\overline{x}) \parallel_B;$
- $\bullet \parallel \phi(\overline{x}) \wedge \psi(\overline{x}) \parallel_B = \parallel \phi(\overline{x}) \parallel_B \cdot \parallel \psi(\overline{x}) \parallel_B;$
- $\bullet \parallel \phi(\overline{x}) \vee \psi(\overline{x}) \parallel_B = \parallel \phi(\overline{x}) \parallel_B + \parallel \psi(\overline{x}) \parallel_B;$
- $\| \phi(\overline{x}) \rightarrow \psi(\overline{x}) \|_{B} = -\| \phi(\overline{x}) \| + \| \psi(\overline{x}) \| = \| \phi(\overline{x}) \| \Rightarrow \| \psi(\overline{x}) \|$;
- $\bullet \parallel \exists x \phi(x, \overline{x}) \parallel_B = \sum_{x \in U} \parallel \phi(x, \overline{x}) \parallel_B;$
- $\bullet \parallel \forall x \phi(x, \overline{x}) \parallel_B = \prod_{x \in U} \parallel \phi(x, \overline{x}) \parallel_B.$

Remark that $\| \phi(\overline{x}) \to \psi(\overline{x}) \|_B = 1 \iff \| \phi(\overline{x}) \|_B \le \| \psi(\overline{x}) \|_B$.

Call a formula $\phi(\overline{x})$ valid for $\overline{x} \in U$ if $\| \phi(\overline{x}) \|_B = 1$: then the axioms of equality and all axioms of first order logic are valid.

Hence provably equivalent formulae receive equal values.

Quotienting the algebra

Let Ψ be a *complete algebra homomorphism* of B onto B', and let \mathcal{F} be the dual filter of the kernel of Ψ (an ideal of B).

Define the equivalence $\equiv_{\mathcal{F}}$ on U by $x \equiv_{\mathcal{F}} y \iff || x = y ||_B \in \mathcal{F}$.

Let π be the projection of U onto the quotient $U' = U/\mathcal{F}$, and define I', E'' by $I' \circ \pi = \Psi \circ I$ and $E' \circ \pi = \Psi \circ E$.

Then (U', B'; I', E') is a boolean model, called the quotient model of U modulo \mathcal{F} .

When B' is the trivial two-element algebra $\{0,1\}=\mathbb{Z}_2$ one obtains a boolean quotient model corresponding to an *ordinary* (possibly nonstandard) model (M,R) satisfying

$$M \models \phi[\pi(\overline{u})] \iff \Psi(\parallel \phi(\overline{u}) \parallel_B) = 1.$$

Full models

More generally, call *full* a boolean model U if for all formula $\phi(x, \overline{y})$, with x free, and all $(\overline{v}) \in U^n$, there exists $u \in U$ s.t.

$$\|\exists x\phi(x,\overline{v})\|_B = \sum_{x\in U} \|\phi(x,\overline{v})\|_B = \|\phi(u,\overline{v})\|_B.$$

Given an ultrafilter \mathcal{F} on B, and a full Boolean model U, the ordinary quotient model $U/\mathcal{F}=(M,R)$ satisfies the following Lemma.

Let $a_1, \ldots, a_n \in M$ be the \equiv_F -classes of $u_1, \ldots, u_n \in U$. Then $M \models \phi[a_1, \ldots, a_n] \iff \| \phi(u_1, \ldots, u_n) \|_B \in \mathcal{F}$

NB: When the algebra B is *finite*, all Boolean Models are full, and all ultrafilters are principal.

The Boolean model V^B

Let B be a complete Boolean algebra, and define inductively

$$V_0 = \emptyset$$
, $V_{\alpha+1}^B = \{f : X \to B \mid X \subseteq V_\alpha^B\}$, $V_\lambda^B = \bigcup_{\alpha < \lambda} V_\alpha^B$ (limit λ).

Let V^B be the class union of all V^B_{α} , and define the *Boolean* rank of $x \in V^B$ by $\rho^B(x) = \min \{\alpha \mid x \in V^B_{\alpha}\}.$

Inductively on the lexicografically ordered pairs $(\rho^B(x), \rho^B(y))$ define (recalling the boolean operation $a \Rightarrow b = -a + b$):

- 1. $|| x \in y ||_B = \sum_{t \in \text{dom } y} y(t) \cdot || x = t ||_B;$
- 2. $||x \subseteq y||_B = \prod_{t \in \text{dom } x} (x(t) \Rightarrow ||t \in y||_B);$
- 3. $|| x = y ||_B = || x \subseteq y ||_B \cdot || y \subseteq x ||_B$.

Theorem. V^B is a full Boolean model s.t. $\|\forall t(t \in x \to t \in y)\|_B \le \|x \subseteq y\|_B$,

i.e. the axiom of extensionality has Boolean value 1.

Restricted quantification

Remark. The following shortenings are usefull

- $\| (\exists x \in y)\phi(x) \| = \sum_{t \in \text{dom } y} y(t) \cdot \| \phi(t) \|$: in fact $\|\exists x(x \in y \land \phi(x))\| = \sum_{x} (\|\phi(x)\| \cdot \sum_{t \in \text{dom } y} y(t) \| x = t \|) = \sum_{t \in \text{dom } y} y(t) \cdot \sum_{x} (\|\phi(x)\| \cdot \|x = t\|) \le \sum_{t \in \text{dom } y} y(t) \cdot \| \phi(t) \| \le \sum_{t \in \text{dom } y} y(t) \cdot \| \phi(t) \| = \|\exists t(t \in y \land \phi(y))\|.$
- $\| (\forall x \in y) \phi(x) \| = \prod_{x \in \text{dom } y} y(x) \Rightarrow \| \phi(x) \|$: in fact $\| \forall x (x \in y \to \phi(x)) \| = \prod_{x ((\sum_{t \in \text{dom } y} y(t) \| x = t \|) \Rightarrow \| \phi(x) \|) =$ $\leq \prod_{u \in \text{dom } y} ((\sum_{t \in \text{dom } y} y(t) \| u = t \|) \Rightarrow \| \phi(u) \|) \leq$ $\leq \prod_{u \in \text{dom } y} (y(u) \Rightarrow \| \phi(u) \|) \leq \prod_{u \in \text{dom } y} (\| u \in y \| \Rightarrow \| \phi(u) \|).$

The canonical embedding

Definition. The canonical name $\check{x} \in V^B$ of the set $x \in V$ is defined by \in -induction:

dom $\check{x} = \{\check{y} \mid y \in x\}$ and $checkx(\check{y}) = 1$ for all $\check{y} \in dom \check{x}$.

Theorem. Let ϕ be a Δ_0 -formula and $\overline{u} = (u_1, \dots, U_n)$. Then

$$V \models \phi[u_1, \ldots, u_n] \iff \phi(\check{u_1}, \ldots, \check{u_n}) = 1.$$

Hence, if ϕ is Σ_1 , then $V \models \phi[u_1, \dots, U_n] \Longrightarrow \phi(\check{u_1}, \dots, \check{u_n}) = 1$. In particular

$$||x \in Ord|| = \sum_{\alpha \in Ord} ||x = \check{\alpha}|| \quad and \quad ||x \in L|| = \sum_{\alpha \in L} ||x = \check{\alpha}||$$

The main theorem

Theorem. All axioms of ZFC have value 1 in V^B .

Definition. The canonical name $\tilde{\mathbb{G}} \in V^B$ for a generic ultrafilter on B is defined by:

$$\operatorname{dom} \mathbb{G} = \{\check{b} \mid b \in B\} \quad and \quad \mathbb{G}(\check{b}) = b \quad for \ all \ \check{b} \in \operatorname{dom} \mathbb{G}.$$

Then

- 1. $\| \mathbb{G} \text{ ultrafilter on } P(B) \| = 1$,
- 2. $\prod_{\check{X}\in\mathcal{P}(\mathcal{B})}(\|\check{X}\subseteq\mathcal{P}(B)\|\Rightarrow\|\prod\check{X}\in\mathbb{G}\|)=1.$

CAVEAT: \mathbb{G} is not, in general, a complete ultrafilter in V^B , because $\mathcal{P}(B)$ might be properly contained in $\mathcal{P}(B)$. Similarly the algebra B is $\mathcal{P}(B)$ -complete, but possibly not complete.