References

- 1. T. Jech Set theory, Academic Press 1978: Ch. III. 16-17
- 2. P.J. Cohen La teoria degli insiemi e l'ipotesi del continuo, Feltrinelli 1974: Ch. III

Generic extensions

Let $M \models \mathsf{ZFC}$ be a transitive set (or class), and let P be a notion of forcing in M, i.e. a poset $P \in M$. The generic extension of M by the generic set G is a transitive $M[G] \supseteq M$ s.t.:

1. $M[G] \models \mathsf{ZFC};$

2. $\emptyset \neq G \in M[G]$ is a *M*-generic filter on *P*, *i.e.*

• $p \le q \in G \implies q \in G$,

- $\forall p,q \in G \ \exists r \in G \ (r \leq p,q), \text{ and}$
- $(D \in M \cap \mathcal{P}(P) \& \forall p \in P \exists d \in D (d \leq p)) \implies D \cap G \neq \emptyset;$
- 3. $Ord^{M[G]} = Ord^M$, and

4. (*N* transitive, $M \subseteq N \models \mathsf{ZF}$, $G \in N$) $\implies M[G] \subseteq N$.

Forcing relations

The forcing language associated to $P \in M$ is $\mathcal{L} = \{=, \in; \mathcal{C}\} \text{ with } \mathcal{C} \supseteq \{\mathbb{G}\} \cup \{[\check{\mathsf{X}}] | x \in M\},\$ where \mathbb{G} and the \check{x} are constant symbols, whose intended meaning are the generic set G and the element $x \in M$, resp. The forcing relation $p \Vdash \sigma$ between forcing conditions $p \in P$ and sentences σ of the forcing language \mathcal{L} is subject to appropriate logical rules, so as to obtain the following **Theorem.** (Forcing theorem) $M[G] \models \sigma \iff \exists p \in G \ p \Vdash \sigma$.

In fact we shall have

(i) $p \Vdash \sigma \iff \forall G (p \in G \Rightarrow M[G] \models \sigma)$, and (ii) $\forall p \in P \exists G \subseteq P M$ -generic s.t. $p \in G$.

Forcing conditions

The poset P is in the ground model M, and the forcing relation must be defined in M.

Condition (ii) is always fulfilled when M is countable.

Condition (i) is verified provided that any element of M[G] is the interpretation of a constant $c \in C$, and the following conditions are fulfilled (assuming $\lor, \rightarrow, \exists$ defined through \neg, \land, \forall):

1. $p \Vdash \sigma \& q \leq p \implies q \Vdash \sigma;$ 2. $\forall p \exists q \leq p. q \Vdash \sigma \lor q \Vdash \neg \sigma;$ 3. $q \Vdash \sigma \implies q \not \vdash \neg \sigma;$ 4. $q \Vdash \sigma \land \tau \iff q \Vdash \sigma \& q \Vdash \tau;$ 5. $q \Vdash \forall x \varphi(x) \iff q \Vdash \varphi(c) \text{ for all } c \in C.$

Adding new reals

Example. In order to add new subsets of ω to the ground model M, the typical notion of forcing is

 $P = \{f : E \to \{0, 1\} \mid E \in \mathcal{P}_{\omega}(\eta \times \omega)\}, \text{ with } p < q \Leftrightarrow q \subseteq p.$ For G M-generic, put $\chi = \bigcup G$. Then $M[G] \models \chi : \eta \times \omega \to \{0, 1\}$, because the sets $D_{\alpha n} = \{p \in P \mid (\alpha, n) \in \text{dom } p\}$ are dense. Moreover, the sets $x_{\alpha} = \{n \in \omega \mid p(\alpha, n) = 1\} \subseteq \omega$ are different from one another and from any $x \in \mathcal{P}(\omega)^M$, because all sets $D_{\alpha\beta} = \{p \in P \mid \exists n \ p(\alpha, n) \neq p(\beta, n)\}$ are dense for $\alpha \neq \beta$, as are all sets $D_{\alpha x} = \{ p \in P \mid \exists n \ p(\alpha, n) \neq \chi_x(n) \}$ for $x \in M$. **CAVEAT**: even if η is a *cardinal in* M, it might be *collapsed* in M[G] to $|\mathcal{P}(\omega)^M|^{M[G]}$.

Special posets

Let κ be a cardinal. The poset P is

- 1. κ -closed if every weakly descending κ -sequence in P is bounded from below in P;
- 2. κ -distributive if the intersection of κ open dense subsets of P is open dense in P;
- 3. κ -saturated if every subset of P whose elements are pairwise incompatible has size less than κ . The saturation sat(P) of P is the least κ s.t. P is κ -saturated.

Remark 1. Any κ -closed poset is κ -distributive.

Remark 2. The saturation $\kappa = \operatorname{sat}(P)$ of the poset P is regular.