
Sylvester equations
Goal represent linear functions Rm×n → Rp×q.

For instance, to deal with problems like the following one.

Sylvester equation

AX − XB = C

A ∈ Cm×m, C ,X ∈ Cm×n, B ∈ Cn×n.

This must be a mn ×mn linear system, right?

Vectorization gives an explicit way to map it to a vector.



Vectorization: definition

vec X = vec


x11 x12 . . . x1n
x21 x22 . . . x2n
...

... . . . ...
xm1 xm2 . . . xmn

 :=



x11
x21
...

xm1
x12
x22
...

xm2
...

x1n
x2n
...

xmn



.



Vectorization: comments
Column-major order: leftmost index ‘changes more often’. Matches
Fortran, Matlab standard (C/C++ prefer row-major instead).
Converting indices in the matrix into indices in the vector:

(X )ij = (vec X )i+mj 0-based,
(X )ij = (vec X )i+m(j−1) 1-based.



vec(AXB)
First, we will work out the representation of a simple linear map,
X 7→ AXB (for fixed matrices A,B of compatible dimensions).

If X ∈ Rm×n, AXB ∈ Rp×q, we need the pq ×mn matrix that
maps vec X to vec(AXB).

(AXB)hl =
∑

j
(AX )hj(B)jl =

∑
j

∑
i

AhiXijBjl

=
[

Ah1B1l Ah2B1l . . . AhmB1l Ah1B2l Ah2B2l . . . AhmB2l . . .

Ah1Bnl Ah2Bnl AhmBnl ] vec X



Kronecker product: definition

vec(AXB) =


b11A b21A . . . bn1A
b12A b22A . . . bn2A
...

... . . . ...
b1qA b2qA . . . bnqA

 vec X

Each block is a multiple of A, with coefficient given by the
corresponding entry of B>.

Definition

X ⊗ Y :=


x11Y x12Y . . . x1nY
x21Y x22Y . . .

...
... . . . . . . ...

xm1Y xm2Y . . . xmnY

 .

so the matrix above is B> ⊗ A.



Properties of Kronecker products

X ⊗ Y =


x11Y x12Y . . . x1nY
x21Y x22Y . . .

...
... . . . . . . ...

xm1Y xm2Y . . . xmnY

 .

I vec AXB = (B> ⊗ A) vec X . (Warning: not B∗, if complex).
I (A⊗ B)(C ⊗ D) = (AC ⊗ BD), when dimensions are

compatible. Proof: B(DXC>)A> = (BD)X (AC)>.
I (A⊗ B)> = A> ⊗ B>.
I orthogonal⊗ orthogonal = orthogonal.
I upper triangular⊗ upper triangular = upper triangular.
I One can “factor out” several decompositions, e.g.,

A⊗B = (U1S1V ∗1 )⊗(U2S2V ∗2 ) = (U1⊗U2)(S1⊗S2)(V1⊗V2)∗.



Solvability criterion

Theorem
The Sylvester equation is solvable for all C iff Λ(A) ∩ Λ(B) = ∅.

AX − XB = C ⇐⇒

(In ⊗ A− B> ⊗ Im) vec(X ) = vec(C).

Schur decompositions of A,B>: A = QATAQ∗A, B> = QBTBQ∗B.
Then,

In ⊗ A− B> ⊗ Im = (QB ⊗ QA)(In ⊗ TA + TB ⊗ Im)(QB ⊗ QA)∗.

is a Schur decomposition.
What is on the diagonal of In ⊗ TA + TB ⊗ Im?
If Λ(A) = {λ1, . . . , λm}, Λ(B) = {µ1, . . . , µn}, then it’s
Λ(In ⊗ A− B> ⊗ Im) = {λi − µj : i , j}.



Solution algorithms
The naive algorithm costs O((mn)3). One can get down to
O(m3n2) (full steps of GMRES, for instance.)

Bartels–Stewart algorithm (1972): O(m3 + n3).

Idea: invert factor by factor the decomposition

(QB ⊗ QA)(In ⊗ TA + TB ⊗ Im)(QB ⊗ QA)∗.

I Solving orthogonal systems ⇐⇒ multiplying by their
transpose, O(m3 + n3) using the ⊗ structure.

I Solving upper triangular system ⇐⇒ back-substitution; costs
O(nnz) = O(m3 + n3).



Bartels–Stewart algorithm
A more operational description. . .
Step 1: reduce to a triangular equation.

QATAQ∗AX − XQBT ∗BQ∗B = C

TAX̂ − X̂T ∗B = Ĉ , X̂ = Q∗AXQB, Ĉ = Q̂∗ACQB.

Step 2: We can compute each entry Xij , by using the (i , j)th
equation, as long as we have computed all the entries below and to
the right of Xij .



Comments
I Works also with the real Schur form: back-sub yields block

equations which are tiny 2× 2 or 4× 4 Sylvesters.
I Backward stable (as a system of mn linear equations): it’s

orthogonal transformations + back-sub.
I Not backward stable in the sense of ÃX̃ − X̃ B̃ = C̃ [Higham

’93].
Sketch of proof: backward error given by the minimum-norm
solution of the underdetermined system

[
X̃> ⊗ I −I ⊗ X̃ −I

] vec δA
vec δB
vec δC

 = − vec(AX̃ − X̃B − C).

The pseudoinverse of the system matrix can be large if X̃ is
ill-conditioned.



Comments
Condition number: related to the quantity

sep(A,B) := σmin(I ⊗ A− B> ⊗ I) = min
Z

‖AZ − ZB‖F
‖Z‖F

.

If A, B normal, this is simply the minimum difference of their
eigenvalues. Otherwise, it might be larger; no simple expression for
it.



Decoupling eigenvalues
Solving a Sylvester equation means finding[

I −X
0 I

] [
A C
0 B

] [
I X
0 I

]
=
[
A 0
0 B

]
.

Idea Indicates how ‘difficult’ (ill-conditioned) it is to go from
block-triangular to block-diagonal. (Compare also with the scalar
case / Jordan form.)



Invariant subspaces
Invariant subspace (for a matrix M): any subspace U such that
MU ⊆ U .
If U1 is a basis matrix for U (i.e., Im U1 = U), then

MU1 = U1A. Λ(A) ⊆ Λ(M).

Completing a basis U1 to one U = [ U1 U2 ] of Cm, we get

U−1MU =
[
A C
0 B

]
.



Examples (stable invariant subspaces)
Idea: invariant subspaces are ‘the span of some eigenvectors’
(usually) or Jordan chains (more generally).
Example 1 span(v1, v2, . . . , vk) (eigenvectors).

Example 2 Invariant subspaces of
[
λ 1
0 λ

]
.

Example 3 Invariant subspaces of a larger Jordan block.
Example 4: stable invariant subspace: x s.t. limk→∞ Akx = 0

(These give the general case — idea: find Jordan form of the linear
map U 7→ U , x → Mx .)



Reordering Schur forms
In a (complex) Schur form A = QTQ∗, the Tii are the eigenvalues
of A.
Problem
Given a Schur form A = QTQ∗, compute another Schur form
A = Q̂T̂ Q̂∗ that has the eigenvalues in another (different) order.

This can be solved with the help of Sylvester equations.

It is enough to have a method to ‘swap’ two blocks of eigenvalues.



Reordering Schur forms
Let X solve the Sylvester equation AX − XB = C .
Since [

0 I
I −X

] [
A C
0 B

] [
X I
I 0

]
=
[
B 0
0 A

]
,

one sees that U1 =
[
X
I

]
spans an invariant subspace of

[
A C
0 B

]
with associated eigenvalues Λ(B).
Hence
Q = qr(

[ X I
I 0
]
) is such that Q∗

[
A C
0 B

]
Q =

[
T11 T12
0 T22

]
with

Λ(T11) = Λ(B), Λ(T22) = Λ(A).

Example: computing the stable invariant subspace with ordschur.



Sensitivity of invariant subspaces

If I perturb M to M + δM , how much does an invariant subspace
U1 change?

We can assume U = I for simplicity (just a change of basis):[
I
0

]
spans an invariant subspace of M =

[
A C
0 B

]
.

Theorem [Stewart Sun book V.2.2]

Let M =
[
A C
0 B

]
, δM =

[
δA δC
δD δB,

]
, a = ‖δA‖F and so on.

If 4(sep(A,B)− a − b)2 − d(‖C‖F + c) ≥ 0, then there is a

(unique) X with ‖X‖ ≤ 2 d
sep(A,B)−a−b such that

[
I
X

]
spans an

invariant subspace of M + δM .



Proof (sketch)
I M + δM =

[
A+δA C+δC
δD B+δB

]
I Look for a transformation V−1(M + δM)V of the form

V =
[ I 0

X I
]
that zeroes out the (2, 1) block.

I Formulate a Riccati equation
X (A + δA)− (B + δB)X = δD − X (C + δC)X .

I See it as a fixed-point problem

Xk+1 = T̂−1(δD − Xk(C + δC)Xk)

I Pass to norms, show that the iteration map sends a ball
B(0, ρ) (for sufficiently small ρ) to itself:

‖Xk+1‖F ≤ ‖T̂−1‖(d + ‖Xk‖2F (‖C‖F + c)).

I ‖T̂−1‖ = σmin(T̂ ) ≥ σmin(T )− a − b.



Applications of Sylvester equations
Apart from the ones we have already seen:
I As a step to compute matrix functions.
I Stability of linear dynamical systems.

Lyapunov equations AX + XA> = B, B symmetric.
I As a step to solve more complicated matrix equations

(Newton’s method → linearization).

We will re-encounter them later in the course.


