Sylvester equations
Goal represent linear functions R™*" — RP*9,

For instance, to deal with problems like the following one.

Sylvester equation _
IR-pe-f

AX —-XB=C
AeCmm C,XeCm™", BeC™".

This must be a mn x mn linear system, right?

Vectorization gives an explicit way to map it to a vector.



Vectorization: definition
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Vectorization: t BIR
ectorization: comments S;E-))[)j

Column-major order: leftmost index ‘changes more often’. Matches
Fortran, Matlab standard (C/C++ prefer row-major instead).
Converting indices in the matrix into indices in the vector:

(X)ij = (vec X)itmj 0-based,
(X)ij = (vec X)) m(j-1) 1-based.



vec(AXB)  Xuw AXR \vee (:x) — VQC(AXE)

First, we will work out the representation of a simple linear map,
X — AXB (for fixed matrices A, B of compatible dimensions).

If X € R™*" AXB € RP*9, we need the pg x mn matrix that
maps vec X to vec(AXB). ﬂ)\""“ _QR’P‘\

(AXB)p =Y (AX)ni(B)ji = ZAh,X,JBJ,
J J
= [ AmBiy AwBiy ... AmmBi|AnBa AwBx ... ApmBa
| AniBni An2Bni ApmBni vec X



Kronecker product: definition
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Each block is a multiple of A, with coefficient given by the

corresponding entry of BT .

Definition

Xm1 Y Xm?2 Y

so the matrix above is BT @ A.

XlnY

Xmn Y



Properties of Kronecker products

X11Y X12Y XlnY

X®Y: XQ:!_Y X22Y

XmY XmY ... XmnY
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vec AXB = (B" @ A)vec X. (Warning: not B*, if complex).
(A® B)(C ® D) = (AC ® BD), when dimensions are
compatible. Proof: B(DXC")AT = (BD)X(AC)".

(A BT =AT®BT.

orthogonal ® orthogonal = orthogonal.

v

upper triangular ® upper triangular = upper triangular.

vvyyy

One can “factor out” several decompositions, e.g.,

ARB = (UiS1V))@(U:$V5) = (i ) (S105)(Via Va)™.



Solvability criterion

Theorem
The Sylvester equation is solvable for all C iff A(A) N A(B) = 0.

AX - XB=C <=
(I A—B" & I,) vec(X) = vec(C).

Schur decompositions of A,BT: A= QaTaQj}, B' = QeTsQ@%.
Then,

h@A=B' @1n=(Qe® Qa)(h® Ta+ Tz ®In)(Qe ® Qa)*.

is a Schur decomposition.

What is on the diagonal of [, ® Ta+ Tg ® I,?

If A(A) = {A1,..., Am}, A(B) = {11, .-, itn}, then it's
ANl ®@A—=BT @ Im) = {\i — ;1 i,j}.



Solution algorithms

The naive algorithm costs O((mn)3). One can get down to
O(m3n?) (full steps of GMRES, for instance.)

Bartels—Stewart algorithm (1972): O(m3 + n?).

Idea: invert factor by factor the decomposition
(R R QA)Ih® Ta+ T ® Im)(Qs @ Qa)".

» Solving orthogonal systems <= multiplying by their
transpose, O(m> 4 n%) using the ® structure.

» Solving upper triangular system <= back-substitution; costs
O(nnz) = O(m3 + n3).



Bartels—Stewart algorithm

A more operational description. ..
Step 1: reduce to a triangular equation.

QaTaQiX — XQeTEQp = C

TAX - XTy=C, X=Q;XQs C=Q,CQs.

Step 2: We can compute each entry Xj;, by using the (/, j)th
equation, as long as we have computed all the entries below and to
the right of Xj;.

[ B - - ]




Comments

| 2

>

| 4

Works also with the real Schur form: back-sub yields block
equations which are tiny 2 x 2 or 4 x 4 Sylvesters.

Backward stable (as a system of mn linear equations): it's
orthogonal transformations + back-sub.

Not backward stable in the sense of AX — XB = C [Higham
'93].

Sketch of proof: backward error given by the minimum-norm
solution of the underdetermined system

_ ~ vecda L
[XT@1 —1eX —I] |vecdg| = —vec(AX — XB - C).
vecdc

The pseudoinverse of the system matrix can be large if X is
ill-conditioned.



Comments
Condition number: related to the quantity

|AZ - zB|r

sep(A, B) := omin(l ® A— BT @ I) = min
z |zl

If A, B normal, this is simply the minimum difference of their
eigenvalues. Otherwise, it might be larger; no simple expression for
it.



Decoupling eigenvalues

Solving a Sylvester equation means finding

C o o

Idea Indicates how ‘difficult’ (ill-conditioned) it is to go from
block-triangular to block-diagonal. (Compare also with the scalar
case / Jordan form.)



Invariant subspaces

Invariant subspace (for a matrix M): any subspace U such that
MU CU.
If Uy is a basis matrix for U (i.e., Im Uy = U), then

MU, = UsA. A(A) € A(M).

Completing a basis U; to one U = [ U1 U;] of C™, we get

1 A C
UIVIU_[OB.



Examples (stable invariant subspaces)

Idea: invariant subspaces are ‘the span of some eigenvectors’
(usually) or Jordan chains (more generally).
Example 1 span(vy, va, ..., vk) (eigenvectors).

1
0 Al
Example 3 Invariant subspaces of a larger Jordan block.
Example 4: stable invariant subspace: x s.t. limyg_, Akx =0

Example 2 Invariant subspaces of

(These give the general case — idea: find Jordan form of the linear
map U — U, x — Mx.)



Reordering Schur forms

In a (complex) Schur form A= QTQ*, the T;; are the eigenvalues
of A.

Problem

Given a Schur form A = QTQ*, compute another Schur form
A= QT Q" that has the eigenvalues in another (different) order.

This can be solved with the help of Sylvester equations.

It is enough to have a method to ‘swap’ two blocks of eigenvalues.



Reordering Schur forms

Let X solve the Sylvester equation AX — XB = C.
Since
o [ ||A C||X I| _|B O
IR R

one sees that U; = /

with associated eigenvalues A(B).
Hence

Q=ar([f}]) is such that Q* /3 g Q= [7;)11 gj with
AN(T11) = A(B), AN(T22) = A(A).

Example: computing the stable invariant subspace with ordschur.

. . A C
spans an invariant subspace of 0 B



Sensitivity of invariant subspaces

If | perturb M to M + §ps, how much does an invariant subspace
U1 change?

We can assume U = [ for simplicity (just a change of basis):
A c]

/ . .
lol spans an invariant subspace of M = 0 B

Theorem [Stewart Sun book V.2.2]

[ac] . [ea bc
LetM—[O B],(S/y]— 5p s,

If 4(sep(A, B) — a— b)? — d(||C||F + ¢) > 0, then there is a

], a=||0allF and so on.

(unique) X with || X]|| < QW such that spans an

/
X
invariant subspace of M + §.



Proof (sketch)
> M4 oM = [ AR L]
» Look for a transformation Vfl(l\/l + dM)V of the form
V = [} 9] that zeroes out the (2, 1) block.

» Formulate a Riccati equation
X(A+64) — (B+d5)X =6dp — X(C+5C)X.
P See it as a fixed-point problem

X1 = T7H0p — Xk(C 4+ 5C)X)

P Pass to norms, show that the iteration map sends a ball
B(0, p) (for sufficiently small p) to itself:

IXice e < T2 + IXel (I C Nl + €))-

> |77 = omin(T) > omin(T) — a— b.



Applications of Sylvester equations

Apart from the ones we have already seen:
> As a step to compute matrix functions.

» Stability of linear dynamical systems.
Lyapunov equations AX + XAT = B, B symmetric.

> As a step to solve more complicated matrix equations
(Newton's method — linearization).

We will re-encounter them later in the course.



