¥ XN LN

e S et
= LN = o

NOTES ON HOMOLOGICAL ALGEBRA

TAMAS SZAMUELY

CONTENTS

Background from category theory

Categories of modules

Complexes and resolutions

Derived functors

Ext and Tor

Homological dimension

Applications of Serre’s theorem

The Koszul complex

Cohomology of groups
Hochschild homology and cohomology
The homotopy category and its exact triangles
The derived category
Description in the presence of enough projectives
Total derived functors

1. BACKGROUND FROM CATEGORY THEORY
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Definition 1.1. A category consists of objects as well as morphisms between pairs of

objects; given two objects A, B of a category C, the morphisms from A to B form a

set, denoted by Hom(A, B). (Notice that in contrast to this we do not impose that

the objects of the category form a set.) These are subject to the following constraints.

(1) For each object A the set Hom(A, A) contains a distinguished element idy,

the identity morphism of A.

(2) Given two morphims ¢ € Hom(B,C) and ¢» € Hom(A, B), there exists a
canonical morphism ¢ o ¢ € Hom(A, C'), the composition of ¢ and . The

composition of morphisms should satisfy two natural axioms:

e Given ¢ € Hom(A, B), one has ¢ oidy = idg o ¢ = ¢.

e (Associativity rule) For A € Hom(A, B), ¢ € Hom(B, C), ¢ € Hom(C, D)

one has (po1p)o X =¢go (o).
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A morphism ¢ € Hom(A, B) is an isomorphism if there exists ¢ € Hom(B, A) with
Yo ¢ =1idy, ¢ 09 = idp; we denote the set of isomorphisms between A and B by
Isom(A, B).

Examples 1.2. In these notes, the main examples we’ll consider will be algebraic.
Thus we shall consider, for example, the category of groups, abelian groups, rings,
or modules over a fixed ring R. In all these examples the morphisms are the homo-
morphisms between appropriate objects.

Remark 1.3. If the objects themselves form a set, we say that the category is small.
In this case one can associate an oriented graph to the category by taking objects as
vertices and defining an oriented edge between two objects corresponding to each
morphism.

In the examples above the categories are not small but if we restrict to some set
of objects we obtain small subcategories (in the sense to be defined below).

For small categories it is easy to visualize the contents of the following definition.

Definition 1.4. The opposite category C°” of a category C is “the category with the
same objects and arrows reversed”; i.e. for each pair of objects (A4, B) of C, thereis a
canonical bijection between the sets Hom(A, B) of C and Hom(B, A) of C”” preserv-
ing the identity morphisms and composition.

Next we consider subcategories.

Definition 1.5. A subcategory of a category C is just a category D consisting of some
objects and some morphisms of C; it is a full subcategory if given two objects in D,
Homp(A, B) = Hom¢ (A, B), i.e. all C-morphisms between A and B are morphisms
in D.

Examples 1.6. The category of abelian groups is a full subcategory of the category
of groups. Given a ring R # Z, the category of R-modules is a subcategory of that
of abelian groups, but not a full subcategory.

Now comes the second basic definition of category theory.

Definition 1.7. A (covariant) functor F' between two categories C; and C, consist-
s of a rule A — F(A) on objects and a map on sets of morphisms Hom(A, B) —
Hom(F'(A), F(B)) which sends identity morphisms to identity morphisms and p-
reserves composition. A contravariant functor from C; to C, is a functor from C; to
CyP.

Examples 1.8. Here are some examples of functors.
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(1) The identity functor is the functor idc on any category C which leaves all
objects and morphisms fixed.

(2) Other basic examples of functors are obtained by fixing an object A of a cat-
egory C and considering the covariant functor Hom(A, __) (resp. the con-
travariant functor Hom(__, A)) from C to the category Sets which sends an ob-
ject B the set Hom(A, B) (resp. Hom(B, A)) and a morphism ¢ : B — C'to the
set-theoretic map Hom(A, B) — Hom(A, C) (resp. Hom(C, A) — Hom(B, A))
induced by composing with ¢.

(3) There are forgetful functors defined by forgetting structure. For instance, as-
sociating to an R-module the underlying abelian group and to an R-module
homomorphism the underlying group homomorphism defines the forgetful
functor from the category of R-modules to that of abelian groups.

(4) On the category Modp of R-modules important examples of functors are giv-
en by tensor product. Fix an R-module B. The rule

A’-)A@RB, (¢A1—>A2)l—>(¢®ld3A1®B—>A2®B)

defines a functor .- ®g B : Modgr — Modg. Similarly, tensoring by a module
A on the left gives a functor A ®x - : Modr — Modp.

Definition 1.9. If F' and G are two functors with same domain C; and target C,, a
morphism of functors ® between F and G is a collection of morphisms ¢, : F(A) —
G(A) in C, for each object A € C; such that for every morphism ¢ : A — B in C; the
diagram

F(¢)l lG(dﬁ

F(B) —2£5 G(B)
commutes. The morphism @ is an isomorphism if each ®4 is an isomorphism; in
this case we shall write F' = G.

Remark 1.10. Given two categories C; and C, one can define (modulo some set-
theoretic difficulties) a new category called the functor category of the pair (Ci,Cs)
whose objects are functors from C; to C, and whose morphisms are morphisms of
functors. Here the composition rule for some ® and ¥ is induced by the composi-
tion of the morphisms ¢4 and V4 for each object A in C;.

We now turn to categories with additional properties, abstracting some proper-
ties of categories of modules over some ring.

Definition 1.11. A category A is additive if the following hold:



