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1. BACKGROUND FROM CATEGORY THEORY

Definition 1.1. A category consists of objects as well as morphisms between pairs of
objects; given two objects A, B of a category C, the morphisms from A to B form a
set, denoted by Hom(A,B). (Notice that in contrast to this we do not impose that
the objects of the category form a set.) These are subject to the following constraints.

(1) For each object A the set Hom(A,A) contains a distinguished element idA,
the identity morphism of A.

(2) Given two morphims φ ∈ Hom(B,C) and ψ ∈ Hom(A,B), there exists a
canonical morphism φ ◦ ψ ∈ Hom(A,C), the composition of φ and ψ. The
composition of morphisms should satisfy two natural axioms:
• Given φ ∈ Hom(A,B), one has φ ◦ idA = idB ◦ φ = φ.
• (Associativity rule) For λ ∈ Hom(A,B), ψ ∈ Hom(B,C), φ ∈ Hom(C,D)

one has (φ ◦ ψ) ◦ λ = φ ◦ (ψ ◦ λ).
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A morphism φ ∈ Hom(A,B) is an isomorphism if there exists ψ ∈ Hom(B,A) with
ψ ◦ φ = idA, φ ◦ ψ = idB; we denote the set of isomorphisms between A and B by
Isom(A,B).

Examples 1.2. In these notes, the main examples we’ll consider will be algebraic.
Thus we shall consider, for example, the category of groups, abelian groups, rings,
or modules over a fixed ring R. In all these examples the morphisms are the homo-
morphisms between appropriate objects.

Remark 1.3. If the objects themselves form a set, we say that the category is small.
In this case one can associate an oriented graph to the category by taking objects as
vertices and defining an oriented edge between two objects corresponding to each
morphism.

In the examples above the categories are not small but if we restrict to some set
of objects we obtain small subcategories (in the sense to be defined below).

For small categories it is easy to visualize the contents of the following definition.

Definition 1.4. The opposite category Cop of a category C is “the category with the
same objects and arrows reversed”; i.e. for each pair of objects (A, B) of C, there is a
canonical bijection between the sets Hom(A,B) of C and Hom(B,A) of Cop preserv-
ing the identity morphisms and composition.

Next we consider subcategories.

Definition 1.5. A subcategory of a category C is just a category D consisting of some
objects and some morphisms of C; it is a full subcategory if given two objects in D,
HomD(A,B) = HomC(A,B), i.e. all C-morphisms between A and B are morphisms
in D.

Examples 1.6. The category of abelian groups is a full subcategory of the category
of groups. Given a ring R 6= Z, the category of R-modules is a subcategory of that
of abelian groups, but not a full subcategory.

Now comes the second basic definition of category theory.

Definition 1.7. A (covariant) functor F between two categories C1 and C2 consist-
s of a rule A 7→ F (A) on objects and a map on sets of morphisms Hom(A,B) →
Hom(F (A), F (B)) which sends identity morphisms to identity morphisms and p-
reserves composition. A contravariant functor from C1 to C2 is a functor from C1 to
Cop2 .

Examples 1.8. Here are some examples of functors.
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(1) The identity functor is the functor idC on any category C which leaves all
objects and morphisms fixed.

(2) Other basic examples of functors are obtained by fixing an object A of a cat-
egory C and considering the covariant functor Hom(A, ) (resp. the con-
travariant functor Hom( , A)) from C to the category Sets which sends an ob-
jectB the set Hom(A,B) (resp. Hom(B,A)) and a morphism φ : B → C to the
set-theoretic map Hom(A,B)→ Hom(A,C) (resp. Hom(C,A)→ Hom(B,A))
induced by composing with φ.

(3) There are forgetful functors defined by forgetting structure. For instance, as-
sociating to an R-module the underlying abelian group and to an R-module
homomorphism the underlying group homomorphism defines the forgetful
functor from the category of R-modules to that of abelian groups.

(4) On the category ModR ofR-modules important examples of functors are giv-
en by tensor product. Fix an R-module B. The rule

A 7→ A⊗R B, (φ : A1 → A2) 7→ (φ⊗ idB : A1 ⊗B → A2 ⊗B)

defines a functor ⊗R B : ModR → ModR. Similarly, tensoring by a module
A on the left gives a functor A⊗R : ModR → ModR.

Definition 1.9. If F and G are two functors with same domain C1 and target C2, a
morphism of functors Φ between F and G is a collection of morphisms ΦA : F (A) →
G(A) in C2 for each object A ∈ C1 such that for every morphism φ : A→ B in C1 the
diagram

F (A)
ΦA−−−→ G(A)

F (φ)

y yG(φ)

F (B)
ΦB−−−→ G(B)

commutes. The morphism Φ is an isomorphism if each ΦA is an isomorphism; in
this case we shall write F ∼= G.

Remark 1.10. Given two categories C1 and C2 one can define (modulo some set-
theoretic difficulties) a new category called the functor category of the pair (C1, C2)

whose objects are functors from C1 to C2 and whose morphisms are morphisms of
functors. Here the composition rule for some Φ and Ψ is induced by the composi-
tion of the morphisms ΦA and ΨA for each object A in C1.

We now turn to categories with additional properties, abstracting some proper-
ties of categories of modules over some ring.

Definition 1.11. A category A is additive if the following hold:


