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1. DIMENSION OF RINGS, RINGS OF LOW DIMENSION

All rings are supposed to be commutative and have a unit element. We start with
the following basic definition.

Definition 1.1. Let A be a ring and P ⊆ A be a prime ideal. Define the height of P
by

ht(P ) := sup{r ∈ N | ∃P1 ( P2 ( · · · ( Pr ( P chain of prime ideals in P}

The Krull dimension of the ring A is

dim (A) := sup{ht(P ) | P ⊆ A prime}

In particular, when A is a local ring, i.e. it has a unique maximal ideal P , we have
dim (A) = ht(P ).

We shall prove later that over a field k both the polynomial ring k[x1, . . . , xn] and
the power series ring k[[x1, . . . , xn]] have Krull dimension n. In both cases (x1) ⊂
(x1, x2) ⊂ · · · ⊂ (x1, . . . , xn) is a chain of prime ideals of maximal length. Note,
however, that whereas k[x1, . . . , xn] is a finitely generated k-algebra and n is its
minimal number of generators, this is not the case for k[[x1, . . . , xn]].
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Remarks 1.2.
1. For A the coordinate ring of an affine variety X the chain P1 ( P2 ( · · · ( Pr

corresponds to a chain of irreducible subvarieties Z1 ) Z2 ) · · · ) Zr contained in
X . The dimension is thus the length of the longest such chain. This is a non-linear
version of the definition of the dimension of a vector space V as the length of a
maximal chain of subspaces in V .

2. Recall that for a prime ideal P ⊂ A the map Q 7→ QAP induces a bijection
between prime ideals Q ⊂ P and the prime ideals of the localization AP . This
implies ht(P ) = ht(PAP ) = dim (AP ).

Let us look at examples of rings of low Krull dimension. Obviously, a field has
Krull dimension 0. More generally, we have:

Proposition 1.3. A Noetherian local ring A is of Krull dimension 0 if and only if it is
Artinian.

Examples of such rings other than fields include the rings Z/pnZ for p a prime
number and n > 1 as well as k[t]/(tn) for t a field and n > 1. The maximal ideals
are generated by p and t, respectively.

For use in the proof below we recall the following lemma.

Lemma 1.4. The set of nilpotent elements in a ringA is an ideal, and equals the intersection
of the prime ideals in A.

The above ideal is called the nilradical of A.

Proof. The first statement is clear as the radical
√
I of any ideal is again an ideal. For

the second one, note first that a nilpotent element is contained in every prime ideal.
Conversely, assume f ∈ A is not nilpotent. We find a prime ideal not containing f .
Consider the partially ordered set of ideals in A that do not contain any power of f .
This set is not empty (it contains (0)) and satisfies the condition of Zorn’s lemma, so
it has a maximal element P . We contend that P is a prime ideal. Assume x, y ∈ A\P ;
we have to show that xy /∈ P . The ideals P +(x), P +(y) strictly contain P , hence by
maximality of P both contain some power of f . But (P + (x))(P + (y)) ⊂ P + (xy),
and therefore P + (xy) also contains some power of f , hence cannot equal P . This
means xy /∈ P .

Proof of Proposition 1.3. Assume A is of Krull dimension 0. Then by Lemma 1.4 the
maximal ideal P consists of nilpotent elements. Since A is Noetherian, P is finitely
generated so for a generating system y1, . . . , yk there is a big enough exponent N
such that yNi = 0 for all i. Hence all products of k · N elements in P are zero,i.e.
P kN = 0. Now we have a finite descending filtration A ⊇ P ⊇ P 2 ⊇ P 3 ⊇ · · · ⊇
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P kN = 0 of A where every quotient is a finite dimensional vector space over the
field A/P , hence an Artinian A-module. Since an extension of Artinian modules is
again Artinian, we are done by induction.

Conversely, assume A is Artinian, and Q ⊂ P is a prime ideal in A. We show
Q = P ; for this we may replaceA byA/Q and assume moreover thatA is an integral
domain. Suppose there were a nonzero element x ∈ P . As A is Artinian, the chain
(x) ⊃ (x2) ⊃ (x3) ⊃ · · · must stabilize, i.e we find n such that (xn) = (xn+1). In
particular, xn = rxn+1 for some r ∈ A. Since A is an integral domain, this implies
rx = 1 which is impossible for x ∈ P . �

Remark 1.5. In fact, the proposition is true without assuming A local; see e.g. the
book of Atiyah–MacDonald.

Next an important class of local rings of dimension 1.

Definition 1.6. A ring A is a discrete valuation ring if A is a local principal ideal
domain which is not a field.

Basic examples of discrete valuation rings are localizations of Z or k[x] at a (prin-
cipal) prime ideal as well as power series rings in one variable over a field.

In the proposition below we prove that discrete valuation rings are of Krull di-
mension 1 and much more. Observe first that if A is a local ring with maximal ideal
P , then the A-module P/P 2 is in fact a vector space over the field κ(P ) = A/P ,
simply because multiplication by P maps P into P 2.

Proposition 1.7. For a local domain A with maximal ideal P and fraction field K the
following conditions are equivalent:

(1) A is a discrete valuation ring.
(2) A is Noetherian of Krull dimension 1 and P/P 2 is of dimension 1 over κ(P ).
(3) The maximal ideal P is principal, and after fixing a generator t of P every element

x 6= 0 in K can be written uniquely in the form x = utn with u a unit in A and
n ∈ Z.

For the proof we need the following well-known lemma which will be extremely
useful in other situations as well:

Lemma 1.8 (Nakayama). Let A be a local ring with maximal ideal P and M a finitely
generated A-module. If PM = M , then M = 0.

Proof. Assume M 6= 0 and let m0, . . . ,mn be a minimal system of generators of M
over A. By assumption m0 is contained in PM and hence we have a relation m0 =

p0m0 + . . . , pnmn with all the pi elements of P . But here 1 − p0 is a unit in A (as
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otherwise it would generate an ideal contained in P ) and hence by multiplying the
equation by (1− p0)−1 we may write m0 as a linear combination of the other terms,
which is in contradiction with the minimality of the system.

Nakayama’s lemma is often used through the following corollary.

Corollary 1.9. Let A, P , M be as in the lemma and assume given elements t1, . . . , tm ∈
M whose images in the A/P -vector space M/PM form a generating system. Then they
generate M over A.

Proof. Let T be the A-submodule generated by the ti; we have M = T + PM by
assumption. Hence M/T = P (M/T ) and the lemma gives M/T = 0.

Before proving the proposition we need another easy lemma which we’ll prove
in a much more general form later (see Remark 5.17 below).

Lemma 1.10. Let A be a Noetherian integral domain and t ∈ A an element which is not a
unit. Then ∩n(tn) = (0).

Proof. The case t = 0 is obvious. Otherwise suppose a ∈ ∩n(tn) is a nonzero element.
Then a = a1t for some a1 ∈ A. Since a ∈ (t2), there is a2 such that a = a2t

2, so since
A is a domain we have a1 = a2t. Repeating the argument we obtain an increasing
chain of ideals (a1) ⊂ (a2) ⊂ (a3) ⊂ · · · with ai = ai+1t. Here the inclusions
are strict because an equality (ai) = (ai+1) would imply that for some s we have
ai+1 = ais = ai+1ts which is impossible as t is not a unit. This contradicts the
assumption that A is Noetherian.

Proof of Proposition 1.7. To prove (1)⇒ (2), assumeA is a discrete valuation ring and
P is generated by t. Since A is a principal ideal domain, every nonzero prime ideal
is generated by some prime element p. But (p) is contained in the maximal ideal
P = (t), which means that t divides p. But this is only possible if (p) = (t) = P ,
so A is of Krull dimension 1. Also, the image of t is a basis of the vector space
P/P 2, whence (2). Next, assume (2) and apply Corollary 1.9 with M = P . It follows
that the maximal ideal P of A is generated by some element t. To prove (3), it will
suffice to show that it holds for every nonzero element a ∈ A with n ≥ 0. To find
n, observe that by Corollary 1.10 there is a unique n ≥ 0 for which a ∈ P n \ P n+1

which means that a can be written in the required form. Moreover, if a = utn = vtn,
then u = v since A is a domain. Finally, assume (3) and take a nonzero ideal I of A.
Note that condition (3) also implies ∩n(tn) = (0), and therefore there is an n > 0 that
is maximal with the property that I ⊂ (tn). By maximality of n we find an element
a ∈ I not contained in (tn+1), whence (tn) = (a) ⊂ I , from which I = (tn) follows.

We now explain the origin of the name “discrete valuation ring”.
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Definition 1.11. For any field K, a discrete valuation is a surjection v : K → Z∪{∞}
with the properties

v(xy) = v(x) + v(y),

v(x+ y) ≥ min{v(x), v(y)},

v(x) =∞ if and only if x = 0.

The elements x ∈ K with v(x) ≥ 0 form a subring A ⊂ K called the valuation ring of
v.

Proposition 1.12. A domain A is a discrete valuation ring if and only if it is the valuation
ring of some discrete valuation v : K → Z ∪ {∞}, where K is the fraction field of A.

Proof. Assume firstA is a discrete valuation ring. Define a function v : K → Z ∪ {∞}
by mapping 0 to∞ and any x 6= 0 to the integer n given by Proposition 1.7 (3). It is
immediate to check that v is a discrete valuation with valuation ring A. Conversely,
given a discrete valuation v on K, the elements of A with v(a) > 0 form an ideal
P ⊂ A with the property that a ∈ P \ {0} if and only if a−1 /∈ A. It follows that
A \ P = {a ∈ A : v(a) = 0} is the set of units in a and hence A is local with maximal
ideal P . Note that if t is an element of P with v(t) = 1, then for every p ∈ P we have
v(p/t) = v(p)− 1 ≥ 0, so that p/t ∈ A and therefore (t) = P . Similarly, if a ∈ K is a
nonzero element with v(a) = n, we have v(a/tn) = 0 and condition (3) of the above
proposition follows.

Examples 1.13.

(1) The discrete valuation corresponding to k[[t]] is the function k((t)) → Z ∪
{∞} sending a power series to the order of its zero or pole at 0.

(2) The ring Z(p) is the valuation ring of the discrete valuation Q → Z ∪ {∞}
sending 0 to∞ and a rational number a/b 6= 0 to the unique integer n such
that a/b = pn(a′/b′) with a′, b′ prime to p. This defines an infinite number of
different discrete valuations on Q, one for each prime p.

(3) Similarly, one can consider the discrete valuation on k(t) sending 0 to∞ and
a rational function p/q 6= 0 to the unique integer n such that p/q = tn(p′/q′)

with p′(0) 6= 0, q′(0) 6= 0. Its valuation ring is the localization k[t](t) ⊂ k(t).
More generally, for each a ∈ k the localization k[t](t−a) ⊂ k(t) is a discrete

valuation ring corresponding to the discrete valuation taking the ’order of
zero or pole’ of a function at t = a.

There is another very useful characterization of discrete valuation rings which
uses the notion of integral closure. We begin by some reminders. Recall that given
an extension of rings A ⊂ B, an element b ∈ B is said to be integral over A if it is a
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root of a monic polynomial xn + an−1x
n−1 + · · · + a0 ∈ A[x]. There is the following

characterization of integral elements:

Lemma 1.14. LetA ⊂ B an extension of rings. The following are equivalent for an element
b ∈ B:

(1) The element b is integral over A.
(2) The subring A[b] of B is finitely generated as an A-module.
(3) There is a subring C of B containing b which is finitely generated as an A-module.
(4) There exists a faithful A[b]-module C that is finitely generated as an A-module.

Recall that an A-module C is faithful if there is no nonzero a ∈ A with aC = 0.

Proof. For the implication (1) ⇒ (2) note that if b satisfies a monic polynomial of
degree n, then 1, b, . . . , bn−1 is a basis of A[b] over A. The implication (2) ⇒ (3) is
trivial, and (3)⇒ (4) follows because if C is a subring as in (3) and a ∈ A[b] satisfies
aC = 0, then a = a · 1 = 0. Now only (4) ⇒ (1) remains. For this let c1, . . . , cm be
a system of A-module generators for C and consider the A-module endomorphism
of C given by multiplication by b. For all i we have bci = ai1c1 + · · · + aimcm with
some aij ∈ A. It follows that the system of homogeneous equations

ai1c1 + . . . (aii − b)ci + · · ·+ aimcm = 0

for i = 1, . . . ,m has a nontrivial solution in the ci, hence by Cramer’s rule the deter-
minant of the coefficient matrix annihilates the ci and therefore equals 0 by faithful-
ness of C. This determinant is, up to sign, a monic polynomial in A[x] evaluated at
x = b.

Corollary 1.15. Those elements of B which are integral over A form a subring in B.

Proof. Given two elements b1, b2 ∈ B integral over A, the elements b1 − b2 and b1b2

are both contained in the subring A[b1, b2] of B. This subring is a finitely generated
A-module since A[b1] and A[b2] are, so condition (3) holds.

If all elements ofB are integral overA, we say that the extensionA ⊂ B is integral.

Corollary 1.16. Given a tower of extensionsA ⊂ B ⊂ C withA ⊂ B andB ⊂ C integral,
the extension A ⊂ C is also integral.

Proof. Each c ∈ C satisfies a monic polynomial equation cn + bn−1c
n−1 + · · ·+ b0 = 0

with bi ∈ B and is therefore integral over the A-subalgebra A[b0, . . . , bn−1] ⊂ B. This
is a finitely generated A-module because the bi are integral over A, hence so is the
A-subalgebra A[b0, . . . , bn−1, c] ⊂ C.

For later use we note the following fact.
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Lemma 1.17. If A ⊂ B is an integral extension of integral domains, then A is a field if and
only if B is a field.

Proof. Assume first A is a field. If b ∈ B is a nonzero element, it satisfies a monic
polynomial equation

bn + an−1b
n−1 + · · ·+ a0 = 0

with ai ∈ A and a0 6= 0 (this latter fact uses that B is an integral domain). But then
(−a−1

0 )(bn−1 + bn−1b
n−2 + · · ·+ a1) is an inverse for b, which shows that B is a field.

For the converse, suppose B is a field and given a ∈ A, pick b ∈ B with ab = 1.
Since B is integral over A, we also find ai ∈ A with bn + an−1b

n−1 + · · ·+ a1b+ a0 = 0

by Lemma 1.14. Multiplying by an−1 we obtain b = −an−1−· · ·−a1a
n−2−a0a

n−1 ∈ A
as required.

If A is a domain with fraction field K and L is an extension of K, the integral
closure of A in L is the subring of L formed by elements integral over A. We say
that A is integrally closed if its integral closure in the fraction field K is just A. By
Corollary 1.16 the integral closure of a domain A in some extension L of its fraction
field is integrally closed.

Example 1.18. A unique factorization domain A is integrally closed. Indeed, we
may write every element of the fraction field K in the form a/b with a, b coprime. If
it satisfies a monic polynomial equation (a/b)n+an−1(a/b)n−1 +a1(a/b)+a0 = 0 with
coefficients in A, then after multiplying with bn we see that an should be divisible
by b, which is only possible when b is a unit.

In particular, the ring Z is integrally closed.

Now we can state:

Proposition 1.19. A local domain A is a discrete valuation ring if and only if A is Noe-
therian, integrally closed and its Krull dimension is 1.

Integrally closed Noetherian domains of Krull dimension 1 are usually called
Dedekind domains. So the proposition says that a local Dedekind domain is the same
thing as a discrete valuation ring.

For the proof recall the following lemma which is a starting point of the theory of
associated primes.

Lemma 1.20. LetA be a Noetherian ring,M a nonzeroA-module and I a maximal element
in the system of ideals ofA that are annihilators of nonzero elements ofM . Then I is a prime
ideal.

Recall that the annihilator of m ∈ M is the ideal {a ∈ A : am = 0} ⊂ A. A
maximal element I as in the lemma exists because A is Noetherian.



8 TAMÁS SZAMUELY

Proof. Suppose I is the annihilator of m ∈ M and ab ∈ I but a /∈ I . Then am 6= 0

and its annihilator J contains b. But I is also contained in J , and hence I = J by
maximality of I . We conclude that b ∈ I .

Proof of Proposition 1.19. Necessity of the conditions has already been checked. For
sufficiency, let P be the maximal ideal of A and fix a nonzero x ∈ P . Applying the
lemma to the A-module A/(x) and using the fact that P is the only nonzero prime
ideal of A we find a ∈ A such that P is the annihilator of a mod (x) in A/(x) (note
that the annihilator of 1 mod (x) is nonzero). We next show that we may find y ∈ P
such that ay /∈ xP . Indeed, assume for contradiction that aP ⊆ xP . In the fraction
field K of A we then have (a/x)P ⊂ P , so P is a faithful A[a/x]-module (as both
A[a/x] and P are subrings of K). As A is Noetherian, P is finitely generated as
an A-module, so by Lemma 1.14 the element a/x ∈ K is integral over A. But A is
integrally closed, so a/x ∈ A and therefore a ∈ (x). But then the annihilator of a in
A/(x) is A and not P .

Finally, we show that for y as above we have P = (y) and hence the criterion
of Proposition 1.7 (2) holds. Since ay ∈ (x) by definition of P but ay /∈ xP , we
must have ay = xu with a unit u ∈ A \ P and hence there is an equality of ideals
(x) = (ay). So aP ⊂ (x) means that for every p ∈ P we have ap = ayb for some
b ∈ A. Since A is a domain, we must have p = yb and hence p ∈ (y) as claimed. �

Remark 1.21. Let K be a field of characteristic 0. It contains Q as its prime subfield;
let A be the integral closure of Z in K. Then A has Krull dimension 1. Indeed, if
P ⊂ A is a nonzero prime ideal and x ∈ P a nonzero element, then x satisfies an
irreducible monic polynomial equation xn + an−1x

n−1 + · · · + a0 = 0 over Z. Here
a0 ∈ P ∩ Z is a nonzero element by irreducibility of the polynomial, so P ∩ Z 6= (0)

and therefore P ∩ Z = (p) for some prime number p. But then Z/pZ ⊂ A/P is an
integral extension of integral domains, soA/P is a field by Lemma 1.17. This shows
that P is maximal.

Assume moreover K is a finite extension of Q; in this case K is called an algebraic
number field and A the ring of integers of K. Then it can be proven using arguments
from field theory thatA is a finitely generated Z-module; in particular, it is Noether-
ian. Thus the localizationAP by a maximal P as above is a discrete valuation ring by
Proposition 1.19 (one checks easily that localizations of integrally closed domains
are again integrally closed). We conclude that the ring of integers in a number field
is a Dedekind domain (in fact, this was the first example studied historically).

We conclude this section with a structure theorem for ideals in Dedekind do-
mains, generalizing unique factorization in Z.
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Theorem 1.22. In a Dedekind domain every ideal I 6= 0 can be written uniquely as a
product I = P n1

1 · · ·P nr
r , where the Pi are prime ideals.

Recall the following basic property of Noetherian rings:

Lemma 1.23. IfA is a Noetherian ring and I ⊂ A is an ideal, there are finitely many prime
ideals P ⊃ I that are minimal with this property.

Proof. We first show that the radical
√
I is the intersection of finitely many prime

ideals. Indeed, assume this is not the case. Since A is Noetherian, we may assume
I is maximal with this property. Plainly

√
I cannot be a prime ideal, so we find

a1, a2 6∈
√
I with a1a2 ∈

√
I . For i = 1, 2 let Ii be the intersection of the prime ideals

containing I and ai. Then I1 ∩ I2 =
√
I by Lemma 1.4 applied to A/

√
I , but each Ii

is the intersection of finitely many prime ideals by maximality of I , contradiction.
Now if

√
I = P1 ∩ · · · ∩ Pr with some prime ideals Pi and P ⊃ I is a prime ideal

different from the Pi, then P ⊃ P1 · · ·Pr and therefore P ⊃ Pi for some i, so P is not
minimal above I . �

We shall need another easy lemma:

Lemma 1.24. Let A be an arbitrary ring, I, J ideals of A. We have I = J if and only if
IAP = JAP for all maximal ideals P ⊂ A.

Proof. For the nontrivial implication assume a ∈ J is not contained in I . Then
{x ∈ A : xa ∈ I} ⊂ A is an ideal different from A, hence contained in a maximal
ideal P . By definition, the image of a in JAP lies in IAP if and only if sa ∈ I for
some s ∈ A \ P but that’s not possible by choice of P , so IAP 6= JAP . �

Proof of Theorem 1.22. Since dim (A) = 1, there are only finitely many prime ideals
P1, . . . , Pr containing I by Lemma 1.23. Since APi

is a discrete valuation ring for all
i, we have IAPi

= (tni
i ) for some ni > 0, where ti generates PiAPi

. So IAPi
= P ni

i APi

for all i. Now consider J = P n1
1 · · ·P nr

r . If P is a prime ideal different from the Pi, it
does not contain I by assumption and therefore cannot contain any of the Pi. Since it
is a prime ideal, it cannot contain J either, so for P 6= Pi we have IAP = JAP = AP .
A similar reasoning shows that for i 6= j we have Pi 6⊃ P

nj

j , so P nj

j APi
= APi

and
therefore IAPi

= P ni
i APi

= JAPi
. Now the lemma above shows I = J . �

2. DIMENSION OF FINITELY GENERATED ALGEBRAS

In this section we compute the Krull dimension of fintely generated algebras by
means of another invariant.
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Definition 2.1. LetA be an integral domain containing a field k. Elements a1, . . . , ar ∈
A are called algebraically dependent if there exists a nonzero polynomial f ∈ k[x1, . . . , xr]

such that f(a1, . . . , ar) = 0; otherwise they are algebraically independent.
The transcendence degree of A over k is the maximal number of elements in A that

are algebraically independent over k; it may be infinite.

From now on we assume that A is a finitely generated k-algebra that is moreover
an integral domain. Under this assumption the transcendence degree is finite; we
denote it by tr.degk(A).

Theorem 2.2. Under the above assumptions tr.degk(A) = dimA.

The inequality tr.degk(A) ≥ dimA is easy to prove; indeed, it results from the
following lemma by induction along a chain of prime ideals.

Lemma 2.3. Let A be as above and P ⊂ A a nonzero prime ideal. Then tr.degk(A/P ) <

tr.degk(A).

Proof. Let ā1, . . . , ār be a system of algebraically independent elements inA/P , with
r = tr.degk(A/P ). Lift the āi to elements ai ∈ A and let a0 ∈ P be a nonzero element.
It suffices to show that a0, a1 . . . , ar are algebraically independent over k. Assume
not, and let f ∈ k[x0, x1, . . . , xr] be a nonzero polynomial with f(a0, a1, . . . , ar) = 0.
As A is a domain,we may assume that f is irreductible, and in particular not di-
visible by x0. But then f(0, x1, . . . , xr) ∈ k[x1, . . . , xr] is a nonzero polynomial with
f(0, ā1, . . . , ār) = 0, contradiction. �

The proof of the reverse inequality is based on two ingredients. The first is:

Lemma 2.4 (Noether’s normalization lemma). Assume A has transcendence degree d
over k. Then there exist algebraically independent elements x1, . . . , xd such that A is a
finitely generated module over the subring k[x1, . . . , xd] ⊂ A.

Here we mean the k-subalgebra of A generated by x1, . . . , xd; by algebraic inde-
pendence it is isomorphic to the polynomial ring k[x1, . . . , xd].

Proof. We only do the case where k is infinite; it is a bit easier. Let x1, . . . , xn be a sys-
tem of k-algebra generators for A; we may assume that the first d are algebraically
independent. We do induction on n starting from the case n = d which is obvious.
Assume the case n− 1 has been settled. Since n > d, there is a nonzero polynomial
f in n variables over k such that f(x1, . . . , xn) = 0. Denote by m the degree of f and
by fm its homogeneous part of degree m. Since k is infinite, we find a1, . . . , an−1 ∈ k
such that fm(a1, . . . , an−1, 1) 6= 0. Setting x′i := xi − aixn for i = 1, . . . , n − 1 we
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compute

0 = f(x1, . . . , xn) = f(x′1 + a1xn, . . . , x
′
n−1 + an−1xn, xn) =

= fm(a1, . . . , an−1, 1)xmn + gm−1x
m−1
n + · · ·+ g0

with some gi ∈ k[x′1, . . . , x
′
n−1]. Dividing by fm(a1, . . . , an−1, 1) we see that xn sat-

isfies a monic polynomial relation with coefficients in k[x′1, . . . , x
′
n−1], so that A =

k[x′1, . . . , x
′
n−1][xn] is a finitely generated module over its subalgebra k[x′1, . . . , x

′
n−1].

By induction we know that k[x′1, . . . , x
′
n−1] is a finitely generated module over the

polynomial ring k[x1, . . . , xd], and we are done.

Now we turn to the second ingredient.

Lemma 2.5. Suppose A ⊂ B is an integral extension of rings. Given a prime ideal P ⊂ A,
there exists a prime ideal Q ⊂ B such that Q ∩ A = P .

Proof. Localizing bothA andB by the multiplicatively closed subsetA\P we obtain
a ring extension AP ⊂ BP where AP is local with maximal ideal P . We contend that
PBP 6= BP . Indeed, otherwise we have an equation 1 = p1b1 + · · · + prbr with
pi ∈ P and bi ∈ BP . If C ⊂ BP is the AP -subalgebra generated by the bi, then C

satisfies PC = C and moreover is finitely generated as an AP -module because the
bi are integral over AP . Thus C = 0 by Nakayama’s lemma which is impossible
since 1 ∈ C. Therefore indeed PBP 6= BP and we find a maximal ideal QP ⊂ BP

containing PBP . By construction QP ∩AP ⊃ P , hence QP ∩AP = P by maximality
of P . Thus Q := QP ∩B will do.

Corollary 2.6 (Going up theorem of Cohen–Seidenberg). Under the assumptions of
the lemma given a chain P1 ( P2 ( · · · ( Pr of prime ideals in A, there exists a chain
Q1 ( Q2 ( · · · ( Qr of prime ideals in B such that Qi ∩ A = Pi for i = 1, . . . , r.

Proof. We use induction on r. By the lemma we find Q1 ⊂ B with Q1 ∩ A = P1.
Assume Q1 ( Q2 ( · · · ( Qr−1 have been constructed, and denote by P̄r the image
of Pr in A/Pr−1. Since B/Qr−1 is integral over A/Pr−1, the lemma gives a prime
ideal Q̄r in B/Qr−1 such that Q̄r ∩ (A/Pr−1) = P̄r. Now take Qr to be the preimage
of Q̄r in B. �

Proof of Theorem 2.2. By Noether’s normalization lemma we find a polynomial ring
R := k[x1, . . . , xd] contained as a k-subalgebra in A such that A is a finitely gener-
ated R-module, so in particular d = tr.degk(A). Since A is integral over R, by the
going up theorem we may extend the maximal chain (0) ⊂ (x1) ⊂ (x1, x2) ⊂ · · · ⊂
(x1, . . . xd) of prime ideals in R to a chain (0) ( Q1 ( Q2 ( · · · ( Qd of prime ideals
in A, whence dimA ≥ d. As already noted, the reverse inequality follows from
Lemma 2.3. �


