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Abstract

Eigenvalue problems of matrix polynomials P (λ) in Tschebyscheff basis and
suitable linearizations are considered. Following the ideas in [13], a vector
space T1(P ) of potential linearizations is introduced and analyzed. All pen-
cils in T1(P ) are characterized. An easy to check criterion whether a pencil
in T1(P ) is a (strong) lineariation of P (λ) is given. Moreover, a new cri-
terion for determining whether a matrix pencil in the vector space L1(P )
(of potential linearizations for matrix polynomials in monomial basis) is a
strong linearization for P (λ) is derived. A structural resemblance between
the matrix pencils in L1 and T1 is pointed out.
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1. Introduction

In [4] a 3D Laplace eigenvalue problem with Dirichlet boundary conditions
is solved via a polynomial eigenvalue problem P (λ)x = 0, where P is given
in Tschebyscheff basis

P (λ) = Aktk(λ) + Ak−1tk−1(λ) + · · ·+ A1t1(λ) + A0t0(λ) (1)

with n × n matrices A0, . . . , Ak and the scalar Tschebyscheff polynomials
tj : R→ R defined as

t0(λ) = 1, t1(λ) = λ, tn(λ) = 2λtn−1(λ)− tn−2(λ), n ≥ 2. (2)

∗Corresponding author, Email philip.saltenberger@tu-braunschweig.de

Preprint submitted to LAA January 2, 2016



The eigenvalue problem P (λ)x = 0 is solved via the equivalent generalized
linear eigenvalue problem L0y = λL1y with

L0 =


0n In
In 0n In

. . .
. . .

. . .

In 0n In
−A0 · · · −Ak−3 Ak −Ak−2 −Ak−1

 ,L1 =


In

2In
. . .

2In
2Ak

 .

(3)

This can be seen as a companion form linearization of (1).
Linearization is the classical approach for solving polynomial eigenvalue

problems. This has been analyzed extensively for matrix polynomials P (z)
of degree k

P (λ) = Akλ
k + · · ·+ A1λ+ A0, A0, A1, . . . , Ak ∈ Rn×n, Ak 6= 0, (4)

expressed in the monomial basis {1, λ, · · · , λk}. In practice, when the poly-
nomial P (λ) is expressed in the monomial basis as in (4), the most used
linearization to solve the polynomial eigenvalue problem P (λ)y = 0 is the
Frobenius companion form

L(λ) = λ


Ak

In
. . .

In

+


Ak−1 Ak−2 · · · A0

−In 0n

. . .
. . .

−In 0n

 .
It is well-known that the conditioning of the Frobenius companion form
linearization may be worse than the one of the original problem. More-
over, it usually does not preserve any structure present in P (λ) (e.g., for
Aj = AT

j ∈ Rn×n we have P (λ)T = P (λ), but L(λ)T 6= L(λ)). Therefore it
is of interest to have many classes of strong linearizations from which one
can select a linearization with the most favorable properties in terms of, e.g.,
conditioning and backward errors of eigenvalues, or sparsity patterns. This
has motivated a flurry of activity with the goal of finding new linearizations.
The following list of references is an incomplete sample of recent papers on
this topic [3, 13, 14, 15, 18].

When the polynomial P (λ) is expressed in the monomial basis many
linearizations are available in the literature [3, 13]. However, it is becoming
of interest to solve polynomial eigenvalue problems for polynomials expressed
in nonmonomial polynomial bases (see, e.g., [11, 4, 14, 15, 18]). In many
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such cases it is advisable to avoid reformulating P (λ) in monomial basis,
since this change of basis can be poorly conditioned, and may introduce
numerical errors. Moreover, the instability increases with the degree [10].
Hence, constructing linearizations of matrix polynomials from the coefficients
of P (λ) in the given basis has become an active topic of research. Several
linearizations for different polynomial bases have been proposed in [1], and
particularly linearizations in the Tschebyscheff basis [8, 15], Bernstein basis
[14, 19], Newton basis [9, 17], Lagrange basis [2, 5, 18], and Hermite basis [18]
have been investigated. The backward stability of the polynomial rootfinding
problem for polynomials in Tschebyscheff basis solved with colleague matrices
is considered in [16].

Our interest here lies with linearizations of matrix polynomials P (λ) in
Tschebyscheff basis. In line with the derivations in [13] we introduce a vector
space T1(P ) of potential linearizations for matrix polynomials in Tscheby-
scheff basis. A characterization of all pencils in T1(P ) is derived as well as an
easy to check condition whether a pencil in T1(P ) is a (strong) linearization
of P (λ). Moreover, a result on the recovery of eigenvectors for matrix pencils
in T1(P ) is presented. Comparing the results obtained here with those of
[13], it turns out that the characterization of the pencils in T1 is structurally
similar to the characterization of the pencils in L1. In order to see this, we
consider the main characterization theorem for the pencils in L1 in a slightly
different form as in the original paper. This helps to derive a new criterion
on how to determine whether a matrix pencil in L1 is a strong linearization
for P (λ) which is essentially the same as the one for pencils in T1(P ).

After introducing some basic definitions and notions in the next section,
Section 3 reviews some of the results derived in [13] on the ansatz space L1.
Moreover, some new observations are given. In Section 4 we introduce and
analyze the vector space T1 of potential linearizations analogous to L1.

2. Preliminaries

Matrix polynomials of degree k in standard monomial basis are of the
form (4): P (λ) =

∑k
j=0Ajλ

j, where A0, . . . , Ak ∈ Rn×n, Ak 6= 0, and k ≥ 0.
The set of all scalar polynomials of degree at most k will be denoted by
Rk[λ]. With R`

k[λ] we will denote the vector space of all vectors of length
` whose entries are elements of Rk[λ]; R`×m

k [λ] is the set of ` ×m matrices
whose entries are elements of Rk[λ]. Hence, P (λ) may also be considered as
an element of Rn×n

k [λ].
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A matrix polynomial P (λ) ∈ Rn×n
k [λ] is said to be regular if det(P (λ)) 6≡

0, otherwise it is said to be singular.
If λ ∈ C and x ∈ Cn\{0} satisfy P (λ)x = 0, then x is said to be a (right)

eigenvector of P corresponding to the (finite) eigenvalue λ. In case Ak is
allowed to be singular, it is necessary to consider ∞ as a possible eigenvalue
of P (λ). In order to do so, the concept of the reversal of a polynomial is
needed.

Definition 1 (Reversal of matrix polynomial). For a matrix polynomial
P (λ) =

∑k
j=0 Ajλ

j ∈ Rn×n
k [λ] with Ak 6= 0 and k ≥ 1, the reversal of P (λ) is

the polynomial

rev(P (λ)) := λkP (
1

λ
) =

k∑
j=0

Ak−jλ
j.

The nonzero finite eigenvalues of rev(P (λ)) are the reciprocals of those of
P (λ).

Definition 2 (Eigenvalue ∞). P (λ) is said to have an eigenvalue ∞ with
eigenvector x if rev(P (λ)) has the eigenvalue 0 with eigenvector x.

Typically polynomial eigenvalue problems are solved via linearization.
That is, the polynomial P (λ) ∈ Rn×n

k [λ] is transformed into a linear matrix
pencil L(λ) = L0+λL1 with L0, L1 ∈ Rkn×kn (which is the same as to say that
L(λ) ∈ Rkn×kn

1 [λ]) with the same eigenvalues, see, e.g., [7]. In order to deal
with eigenvalues at ∞, the notion of a strong linearization was introduced,
see, e.g. [6, 12].

Definition 3 ((Strong) Linearization). A kn× kn matrix pencil L(λ) is
called (weak) linearization of the n × n matrix polynomial P (λ) of degree
k ≥ 1, if there exist kn× kn unimodular matrix polynomials U(λ) and V (λ)
so that

U(λ)L(λ)V (λ) =


P (λ) 0n · · · 0n

0n

...
0n

I(k−1)n

 . (5)

The linearization is called a strong linearization, if L(λ) is a linearization of
P (λ) and rev(L(λ)) is a linearization of rev(P (λ)).
An unimodular matrix polynomial is a regular square matrix E(λ) with a
determinant independent of λ, that is, det(E(λ)) is a nonzero constant.
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In case L(λ) is a strong linearization of the regular matrix polynomial
P (λ), L(λ) and P (λ) share the same eigenvalues with the same algebraic
and geometric multiplicities.

Other notation used throughout the paper: I = I` is the ` × ` iden-
tity matrix, 0 = 0` is the ` × ` matrix of all zeros, and R` denotes the

` × ` reverse identity, R` =

[
1

. .
.

1

]
∈ R`×`. In case, a p × q rectangular

part of 0 is used, we sometimes use 0p×q to specify the dimension. The
jth column of In will be denoted by ej, and Ej denotes Ej := (Ik ⊗ ej) =[
ej en+j e2n+j · · · e(k−1)n+j

]
∈ Rkn×k. The Kronecker product is denoted

by ⊗ as usual.

3. Vector space L1 of potential linearizations (for matrix polyno-
mials in monomial basis)

This section briefly reviews the main results on linearizations for matrix
polynomials expressed in standard basis as given in [13, Section 3., 4., 4.1.].
Moreover, a new criterion for determining whether a matrix pencil in the
vector space L1(P ) is a strong linearization for P (λ) is derived.

The matrix polynomial P (λ) =
∑k

j=0 Ajλ
j ∈ Rn×n

k [λ] with Ak 6= 0, and
k ≥ 1 can be written as

P (λ) =
[
λAk + Ak−1 Ak−2 · · · A1 A0

]

λk−1In
λk−2In
...
λIn
In

 (6)

=: M(λ)T (µ(λ)⊗ In) (7)

with M(λ) ∈ Rkn×n
1 [λ] and µ(λ) =

[
λk−1 λk−2 · · · λ 1

]T ∈ Rk
k−1[λ].

Definition 4 (Ansatz space L1(P )). The set of all kn×kn matrix pencils
L(λ) satisfying the equation

L(λ)
(
µ(λ)⊗ In

)
= v ⊗ P (λ) (8)

for any v ∈ Rk is called ansatz space for P (λ) as in (6) and is denoted L1(P ).
The vector v in (8) is called ansatz vector for L(λ).
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It is stated in [13, Corollary 3.6] that L1(P ) is an R-vector subspace of
Rkn×kn

1 [λ] and that dim(L1(P )) = k(k − 1)n2 + k for any n × n matrix
polynomial P (λ) of degree k ∈ N. The matrix pencils L(λ) satisfying (8) can
be characterized nicely. The following theorem states Theorem 3.5 from [13]
in a slightly different way which will be more convenient for our discussion.

Theorem 1. Let P (λ) =
∑k

j=0Ajλ
j ∈ Rn×n

k [λ] with Ak 6= 0 and k ≥ 1,

v ∈ Rk and L(λ) ∈ Rkn×kn
1 [λ]. Then L(λ) satisfies L(λ)(µ(λ)⊗In) = v⊗P (λ)

if and only if it may be expressed as

L(λ) = v ⊗M(λ)T +BM̂(λ)T (9)

with a particular matrix B ∈ Rkn×(k−1)n and

M̂(λ)T := M̂?(λ)T ⊗ In ∈ R(k−1)n×kn
1 [λ]

and

M̂?(λ)T :=


−1 λ

−1 λ
. . .

. . .

−1 λ

 ∈ R(k−1)×k
1 [λ].

The expression in (9) is unique, that is, every L(λ) ∈ L1(P ) may be uniquely
identified through v and B.

Note that M̂?(λ)Tµ(λ) = 0 ∈ Rk−1, so we immediately obtain M̂(λ)T (µ(λ)⊗
In) = 0 ∈ R(k−1)n×n. In [13, Theorem 3.5], the matrix pencils L(λ) satisfiying
the ansatz equation (8) are characterized in polynomial form as

L(λ) = λ
[
v ⊗ Ak B

]
+
[
−B + (v ⊗ [Ak−1 · · · A1 ]) v ⊗ A0

]
(10)

with B ∈ Rkn×(k−1)n. It is easy to see that the expressions (9) and (10) are
the same.

Not all matrix pencils in L1(P ) are linearizations for P. The following the-
orem (see Theorem 4.1 and Section 4.1 in [13]) states a criterion for deciding
whether special structured pencils from L1(P ) are strong linearizations or
not.
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Theorem 2. Suppose that P (λ) =
∑k

j=0Ajλ
j ∈ Rn×n

k [λ] with Ak 6= 0 and
k ≥ 1, and L(λ) = λX + Y ∈ L1(P ) has nonzero right ansatz vector v =
αe1 ∈ Rk, so that

L(λ) · (µ(λ)⊗ In) = αe1 ⊗ P (λ).

In this case, X and Y can be partitioned such that

L(λ) = λX + Y = λ

[
αAk X12

0 Z

]
+

[
Y11 αA0

−Z 0

]
, (11)

where Z ∈ R(k−1)n×(k−1)n. Then L(λ) is a strong linearization of P (λ) if
rank(Z) = (k − 1)n.

Observe that for the special L(λ) in (11) the matrix B in (9) is just
[
X12
Z

]
as

can be seen from (10). In the case P (λ) is a polynomial of degree one, (11)
actually reduces to αA1λ+ αA0.

Now suppose that P (λ) =
∑k

j=1 Ajλ
j is an n × n regular matrix poly-

nomial, and L(λ) = λX + Y ∈ L1(P ) has nonzero right ansatz vector v, so
that

L(λ) · (µ(λ)⊗ In) = v ⊗ P (λ).

There always exists a nonsingular matrix H ∈ Rk×k such that Hv = αe1.
Applying (H ⊗ In) to L(λ) generates L̆(λ) = (H ⊗ In)L(λ) which must be of
the form (11) since it has ansatz vector αe1 (this may be seen easily from (9)
or (10)). It is clear that L̆(λ) is a linearization for P (λ) if and only if L(λ) is
a linearization for P (λ), so, extracting Z from L̆(λ), the latter may now be
checked according to Theorem 2.

Actually it is not necessary to transform a matrix pencil L(λ) ∈ L1(P )
into the form (11) in order to determine whether L(λ) is a strong lineariza-

tion. This can be directly determined from L(λ) = v ⊗M(λ)T +BM̂(λ)T .

Theorem 3. Let P (λ) =
∑k

j=0 Ajλ
j ∈ Rn×n

k [λ] with Ak 6= 0 and k ≥ 1,

and L(λ) = v ⊗M(λ)T + BM̂(λ)T with (nonzero) ansatz vector v ∈ Rk and
arbitrary B ∈ Rkn×(k−1)n. Then L(λ) is a strong linearization for P (λ) if
rank([(v ⊗ In) B]) = kn.

In order to prove this theorem, let us first observe an equivalent condition
for Z in (11) being nonsingular.
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Lemma 1. Let B̆ =
[
X12
Z

]
∈ Rkn×(k−1)n be the last (k−1)n columns of X in

(11), that is, Z ∈ R(k−1)n×(k−1)n and X12 ∈ Rn×(k−1)n. Moreover, let α in (11)
be nonzero. Then rank(Z) = (k− 1)n if and only if rank([ (αe1⊗ In) B̆ ]) =
kn.

Proof. ⇒ Let rank(Z) = (k−1)n and suppose rank([ (αe1⊗In) B̆ ]) < kn.
Then there exists a vector u = [u1 · · · ukn ]T ∈ Rkn with [ (αe1 ⊗ In) B̆ ]u =
0kn×1. This implies

B̆
[
un+1 · · · ukn

]T
=
[
w̆T 01×(k−1)n

]T
with some w̆ ∈ Rn. Therefore Z[un+1 · · · ukn]T = 0(k−1)n×1 which contradicts

rank(Z) = (k − 1)n. Hence we have rank([ (αe1 ⊗ In) B̆ ]) = kn.
⇐ Now let rank([ (αe1⊗In) B̆ ]) = kn and assume rank(Z) < (k−1)n. Then
there exists a vector u = [u1 · · · u(k−1)n]T ∈ R(k−1)n with Zu = 0(k−1)n×1 and

B̆u = [ŭT 01×(k−1)n]T for a particular ŭ = [ŭ1 · · · ŭn]T ∈ Rn. We immediately
obtain [

(αe1 ⊗ In) B̆
] [
− ŭ1

α
− ŭ2

α
· · · − ŭn

α
uT
]T

= 0kn×1,

which contradicts rank([ (αe1⊗In) B̆ ]) = kn. Thus we must have rank(Z) =
(k − 1)n. This completes the proof. �

Next we observe that for any nonsingular H ∈ Rk×k such that Hv = αe1

for some α ∈ R\{0}, (H ⊗ In)L(λ) is of the form (11) which is the same as

(H ⊗ In)L(λ) = αe1 ⊗M(λ)T + B̆M̂(λ)T

with B̆ = (H ⊗ In)B =
[
B̆1

B̆2

]
and B̆2 ∈ R(k−1)n×(k−1)n. From Lemma 1 we

have the equivalence of rank(B̆2) = (k− 1)n and rank([ (αe1⊗ In) B̆ ]) = kn.
Moreover,(

H ⊗ In
)[

(v ⊗ In) B
]

=
[
(H ⊗ In)(v ⊗ In) (H ⊗ In)B

]
=
[
(Hv ⊗ In) (H ⊗ In)B

]
=
[
(αe1 ⊗ In) B̆

]
and thus, since H ⊗ In is regular, [(v ⊗ In) B] has full rank if and only
if [(αe1 ⊗ In) B̆] has full rank. Hence rank(B̆2) = (k − 1)n if and only if
rank([ (v ⊗ In) B ]) = kn. This immediately gives Theorem 3.
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The converse of Theorem 3 (and Theorem 2) is true only for regular P (λ).

This is because a linearization L(λ) = v ⊗M(λ)T + BM̂(λ)T of a regular
P (λ) needs to be regular, too, but rank(

[
(v ⊗ In) B

]
) < kn always implies

the existence of a vector w ∈ Ckn with wT
[
(v ⊗ In) B

]
= 01×kn. Therefore

it follows that

wTL(λ) = wT
(

(v ⊗ In)M(λ)T +BM̂(λ)T
)

= 01×kn

for all λ ∈ C. In this case, the matrix pencil L(λ) is singular which contradicts
the fact that L(λ) was assumed to be a linearization of a regular P (λ). The
following theorem from [13] (complemented by our observation in Theorem
3) reveals the connection between linearizations and regular pencils in L1(P ).

Theorem 4. Let P (λ) be a regular n× n matrix polynomial of degree k ≥ 1

and L(λ) = v ⊗M(λ)T + BM̂(λ)T ∈ L1(P ). Then the following statements
are equivalent:

1. L(λ) is a linearization for P (λ).

2. L(λ) is a regular matrix pencil.

3. L(λ) is a strong linearization for P (λ).

4. rank([(v ⊗ In) B]) = kn.

Finally, we state a result on the recovery of eigenvectors for matrix pencils
in L1(P ), see [13, Theorem 3.8, 4.4].

Theorem 5. Let P (λ) be a regular n×n matrix polynomial of degree k ∈ N
and L(λ) ∈ L1(P ) a linearization for P (λ).

1. Let α ∈ C be a finite eigenvalue of P (λ). Then u ∈ Ckn is an eigen-
vector of L(α) if and only if u = µ(α) ⊗ w for an eigenvector w of
P (α).

2. Let α = ∞. Then u ∈ Ckn is eigenvector for L with eigenvalue ∞ if
and only if u = e1 ⊗ w with an eigenvector w of P with eigenvalue ∞.

4. Vector space T1 of potential linearizations (for matrix polyno-
mials in Tschebyscheff basis)

In this section n×n matrix polynomials of degree k ≥ 1 in Tschebyscheff
basis

P (λ) = Aktk(λ) + Ak−1tk−1(λ) + · · ·+ A1t1(λ) + A0t0(λ) ∈ Rn×n
k [λ] (12)
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with Ak 6= 0 are considered. Following the idea of (7), P (λ) can be written
as

P (λ) = [2λAk + Ak−1 Ak−2 − Ak Ak−3 · · · A1 A0]


tk−1(λ)In
tk−2(λ)In

...
t1(λ)In
t0(λ)In


=: T(λ)T (τ(λ)⊗ In), (13)

where T(λ) ∈ Rkn×n
1 [λ] and τ(λ) =

[
tk−1(λ) tk−2(λ) · · · t1(λ) t0(λ)

]T ∈
Rk

k−1[λ].
Analogous to the definition of L1(P ) for a matrix polynomial in stan-

dard basis we define the ansatz space T1(P ) for matrix polynomials (12) in
Tschebyscheff basis.

Definition 5 (Ansatz space T1(P )). The set of all kn×kn matrix pencils
L(λ) satisfying the equation

L(λ)
(
τ(λ)⊗ In

)
= v ⊗ P (λ) (14)

for any v ∈ Rk is called ansatz space for P (λ) as in (12) and is denoted
T1(P ). The vector v in (14) is called ansatz vector for L(λ).

Our main goal is to derive a characterization of T1(P ) similar to Theorem
1 for L1(P ). Since T1(P ) = {cP (λ) | c ∈ R} whenever P (λ) is of degree one,
every element in T1(P ) is a linearization for P (λ) (set U(λ) = V (λ) = In in
(5)). Therefore, we opt out of discussing this case in detail and restrict our
attention to matrix polynomials of degree k ≥ 2 from now on.

Theorem 6. Let P (λ) =
∑k

j=0Ajtj(λ) ∈ Rn×n
k [λ] with Ak 6= 0 and k ≥ 2,

L(λ) ∈ Rkn×kn
1 [λ], and v ∈ Rk arbitrary. Then L(λ) satisfies (14) if and only

if it may be expressed as

L(λ) = v ⊗T(λ)T +BT̂ (λ)T (15)

with a particular matrix B ∈ Rkn×(k−1)n where τ(λ) and T(λ) are as in (13),

T̂ (λ)T := T̂?(λ)T ⊗ In ∈ R(k−1)n×kn
1
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and

T̂?(λ) :=



−1
2λ −1

−1 2λ
. . .

−1
. . . −1
. . . 2λ −1
−1 λ


∈ Rk×k−1

1 [λ]. (16)

The expression (15) uniquely characterizes every L(λ) ∈ T1(P ) through v
and B.

Based on this characterization of T1(P ), one obtains the same criterion
whether L(λ) ∈ T1(P ) is a (strong) linearization for P as in Theorem 4.

Theorem 7. Let P (λ) be a regular n× n matrix polynomial of degree k ≥ 2

and L(λ) = v ⊗ T(λ)T + BT̂ (λ)T ∈ T1(P ). Then the following statements
are equivalent:

1. rank([(v ⊗ In) B]) = kn.
2. L(λ) is a strong linearization for P (λ).
3. L(λ) is a linearization for P (λ).
4. L(λ) is a regular matrix pencil.

It is fairly easy to see that L1(P ) and T1(P ) are isomorphic and therefore
that dim(T1(P )) = k+ k(k− 1)n2, which is just the sum of the dimension of
v and the dimension of B. Moreover, as almost all matrix pencils in L1(P )
are strong linearizations for P (λ) (see Theorem 4.7 in [13]), almost all matrix
pencils in T1(P ) are strong linearizations.

Before we discuss how to prove Theorems 6 and 7, let us mention that the
result on the recovery of eigenvectors for matrix pencils in T1(P ) is essentially
the same as for the recovery of eigenvectors for matrix pencils in L1(P ). As
the proof is similar to that of Theorem 3.8 in [13] no proof is given here.

Theorem 8. Let P (λ) be a regular n×n matrix polynomial of degree k ∈ N
and L(λ) ∈ T1(P ) a linearization for P (λ).

1. Let α ∈ C be a finite eigenvalue of P (λ). Then u ∈ Ckn is an eigen-
vector of L(α) if and only if u = τ(α) ⊗ w for an eigenvector w of
P (α).

2. Let α = ∞. Then u ∈ Ckn is eigenvector for L with eigenvalue ∞ if
and only if u = e1 ⊗ w with an eigenvector w of P with eigenvalue ∞.
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4.1. Proof of Theorem 6

Now we will prove Theorem 6.
First recall that P (λ) =

∑k
s=0 Asts(λ) ∈ Rn×n

k [λ] may be interpreted as
an n× n matrix whose entries are scalar polynomials pij(λ) ∈ R1

k[λ],

[P (λ)]ij = pij(λ) =
k∑

s=0

a
(s)
ij ts(λ) with [As]ij = a

(s)
ij

for 1 ≤ i, j ≤ n. Whenever L(λ) satisfies L(λ)(τ(λ) ⊗ In) = v ⊗ P (λ), we
obtain

L̃ij(λ)τ(λ) = v ⊗ pij(λ), (17)

for every L̃ij(λ) = ET
i L(λ)Ej, 1 ≤ i, j ≤ n where Ei = (Ik ⊗ ei). This is seen

easily since

L̃ij(λ)τ(λ) = (Ik ⊗ eTi )L(λ)(Ik ⊗ ej)τ(λ)

= (Ik ⊗ eTi )L(λ)(Ik ⊗ ej)(τ(λ)⊗ 1)

= (Ik ⊗ eTi )L(λ)(τ(λ)⊗ ej)
= (Ik ⊗ eTi )L(λ)(τ(λ)⊗ In)(1⊗ ej)
= (Ik ⊗ eTi )(v ⊗ P (λ))(1⊗ ej)
= (Ik ⊗ eTi )(v ⊗ P (λ)ej)

= v ⊗ eTi P (λ)ej

= v ⊗ pij(λ).

Hence, the ansatz equation L(λ)(τ(λ) ⊗ In) = v ⊗ P (λ) is composed of n2

subproblems of the form

L̃ij(λ)τ(λ) = v ⊗ pij(λ)
(

= vp(λ)
)
, i, j = 1, . . . , n (18)

for scalar polynomials pij(λ) and L̃ij(λ) ∈ Rk×k
1 [λ]. In order to easily identify

this ansatz space for n = 1, the set of all k×k matrix pencils L̃(λ) satisfying

L̃(λ)τ(λ) = v⊗p(λ) for any v ∈ Rk will be called scalar Tschebyscheff ansatz
space for p(λ) =

∑k
s=0 aijts(λ) and is denoted by T?(p).

In particular, the following scalar version of Theorem 6 holds. Notice
that not all polynomials pij(λ) appearing in (18) need to have degree k, so
we need to formulate the scalar version of Theorem 6 in a quite general
fashion. Theorem 6 then follows from the above considerations easily.
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Theorem 9. Let k ≥ 2 and p(λ) =
∑k

j=0 ajtj(λ) ∈ Rk[λ] with degree s, 0 ≤
s ≤ k be given. Assume L̃(λ) ∈ Rk×k

1 [λ] and v ∈ Rk to be arbitrary. Then

L̃(λ) satisfies L̃(λ)τ(λ) = vp(λ) if and only if L̃(λ) may be expressed as

L̃(λ) = v ⊗T?(λ)T + B̃T̂?(λ)T (19)

with a particular matrix B̃ ∈ Rk×k−1 where τ(λ) is as in (13), T̂?(λ) as in
(16), and

T?(λ)T = [2λak + ak−1 ak−2 − ak ak−3 ak−2 · · · a1 a0] ∈ Rk
1[λ]

is the scalar version of T(λ)T as in (13). Moreover, the expression in (19)

is unique, i.e. every element in T?(p) is uniquely determined by v and B̃.

Hence, for each of the n2 subproblems

L̃ij(λ)τ(λ) = v ⊗ pij(λ)

we obtain
L̃ij(λ) = v ⊗T?ij(λ)T + B̃ijT̂?(λ)T

with

T?ij(λ)T =
[
2λa

(k)
ij + a

(k−1)
ij a

(k−2)
ij − a(k)

ij a
(k−3)
ij a

(k−2)
ij · · · a

(1)
ij a

(0)
ij

]
.

Assembling this into L(λ) yields the desired expression stated in Theorem 6

L(λ) =
n∑

i,j=1

L̃ij(λ)⊗ eieTj

=
n∑

i,j=1

(
v ⊗T?ij(λ)T + B̃ijT̂?(λ)T

)
⊗ eieTj

=
n∑

i,j=1

v ⊗
(
T?ij(λ)T ⊗ eieTj

)
+
(
B̃ijT̂?(λ)T ⊗ eieTj

)
= v ⊗T(λ)T +

(
n∑

i,j=1

B̃ijT̂?(λ)T ⊗ eieTj In

)

= v ⊗T(λ)T +

(
n∑

i,j=1

B̃ij ⊗ eieTj

)(
T̂?(λ)T ⊗ In

)
= v ⊗T(λ)T +BT̂ (λ)T .

13



Thus, it suffices to prove Theorem 9.
Observe that T̂?(λ)T plays a similar role as M̂?(λ) in Theorem 1, it essen-

tially encodes the recursion (2)

T̂?(λ)T τ(λ) = 0 ∈ Rk−1.

In order to prove Theorem 9, let us first assume that p(λ) is of degree k;
that is, deg(p(λ)) = k. Consider the linear map

f : Rk×k
1 [λ]→ Rk

k[λ],

L̃(λ) 7→ L̃(λ)τ(λ)

which describes the left hand side of (18). As the Tschebyscheff polynomi-
als tk−1(λ), . . . , t1(λ), t0(λ) are a basis for the vector space Rk−1[λ] of scalar

polynomials of degree at most k − 1 and as L̃(λ) ∈ Rk×k
1 [λ], f is surjective.

But, as tj+1(λ) = 2λtj(λ)− tj−1(λ), f is not injective. Hence the linear map
f has to have a nontrivial null space.

Now consider V := {vp(λ)|v ∈ Rk} which describes the right hand side
of (18). Clearly, V is a subspace of Rk

k[λ] of dimension k and

T?(p) = f←(V) = {L̃(λ) ∈ Rk×k
1 [λ] | f(L̃(λ)) ∈ V}, (20)

that is, T?(p) is the preimage of V under f . Hence, T?(p) is a subspace of
Rk×k

1 [λ]. Moreover,
T?(p) = T?(p) + null(f)

(recall null(f) = {L̃(λ) ∈ Rk×k
1 [λ] | L̃(λ)τ(λ) = 0} ⊂ Rk×k

1 [λ]). Due to the
construction of T?(p) and the fundamental homomorphism theorem we have

V w T?(p)/null(f). (21)

We already observed that T̂?(λ)T τ(λ) = 0k−1×1. Therefore, B̃T̂?(λ)T τ(λ) =

0k×1 for any B̃ ∈ Rk×k−1 and thus, since B̃T̂?(λ)T ∈ Rk×k
1 [λ], B̃T̂?(λ)T ∈

null(f). Even more, the set of matrices B̃T̂?(λ)T already describe the entire
kernel null(f).

Theorem 10. Let p(λ) =
∑k

j=0 ajtj(λ) ∈ Rk[λ] arbitrary with degree k ≥ 2.
Then

null(f) = {B̃T̂?(λ)T | B̃ ∈ Rk×k−1}. (22)

14



Proof. We have already seen that {B̃T̂?(λ)T | B̃ ∈ Rk×k−1} ⊆ null(f). In

order to prove null(f) ⊆ {B̃T̂?(λ)T | B̃ ∈ Rk×k−1} it suffices to show that

any a(λ) ∈ Rk
1[λ] with a(λ)T τ(λ) = 0 has the form a(λ) = T̂?(λ)b with a

particular vector b ∈ Rk−1. The statement will be proven by contradiction.
Assume

a(λ) =
[
a1(λ) a2(λ) · · · ak−1(λ) ak(λ)

]T ∈ Rk
1[λ]

to be given and that a(λ)T τ(λ) = 0. Furthermore suppose there is no vector

b ∈ Rk−1 so that a(λ) satisfies T̂?(λ)b = a(λ).
First notice that a1(λ) must be independent of λ, and hence has to be a

real constant. This is because multiplying tk−1(λ) with λ produces a term λk

that can not be eliminated by the subsequent computations (keep in mind
that ai(λ) ∈ R1[λ]). Thus a(λ) may be expressed as

a(λ) =


α1

α2 + β2λ
...

αk−1 + βk−1λ
αk + βkλ

 . (23)

Next define the vector b̃ := 1
2

[ β2 β3 · · · βk−1 βk ]T ∈ Rk−1 and observe that

c̃ := a(λ)− T̂?(λ)b̃ (24)

is now completely independent of λ, i.e. c̃ ∈ Rk. Therefore, a(λ) can be

written as a(λ) = T̂?(λ)b̃ + c̃ with b̃ ∈ Rk−1 and c̃ ∈ Rk. Since a(λ) has to
satisfy a(λ)T τ(λ) = 0 we have

0 = a(λ)T τ(λ) =
(
T̂?(λ)b̃+ c̃

)T
τ(λ) = b̃T T̂?(λ)T τ(λ) + c̃T τ(λ)

and, since b̃T T̂?(λ)T τ(λ) = 0 as {B̃T̂?(λ)T | B̃ ∈ Rk×k−1} ⊆ null(f), we
obtain c̃T τ(λ) = 0.

Because c̃ does not contain any λ terms and t0(λ), . . . , tk−1(λ) are nonzero
polynomials with deg(tj(λ)) = j, c̃T τ(λ) = 0 can only be achieved for c̃ =

0 ∈ Rk. Thus, a(λ) = T̂?(λ)b̃+ c̃ = T̂?(λ)b̃ which contradicts the assumption
and establishes our statement. �
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Note that the characterization of null(f) is completely independent of
p(λ). As null(f) is a subspace of Rk×k

1 [λ], it follows immediately from Theo-
rem 10 that

dim(null(f)) = k(k − 1),

because k × (k − 1) is exactly the dimension of B̃ in (22). Moreover, as
dim(V) = k and due to (21) we have

dim(T?(p)/null(f)) = k,

and, since dim(T?(p)/null(f)) = dim(T?(p))− dim(null(f)),

dim(T?(p)) = k2.

Next, a characterization of T?(p)/null(f) is derived which will give The-
orem 9. Observe that T?(λ)T τ(λ) = p(λ) due to the construction of T?(λ).
So, for any v ∈ Rk, it holds

(v ⊗T?(λ)T )τ(λ) = v ⊗ (T?(λ)T τ(λ)) = v ⊗ p(λ) = vp(λ).

Hence, since (v ⊗T?(λ)T ) is a k × k matrix pencil, (v ⊗T?(λ)T ) ∈ T?(p). It
is easy to check that {v ⊗ T?(λ)T | v ∈ Rk} is a k dimensional subspace of
T?(p). It turns out that

Theorem 11. Let p(λ) =
∑k

j=0 ajtj(λ) ∈ Rk[λ] with degree k ≥ 2. Then

T?(p)/null(f) = {v ⊗T?(λ)T + null(f) | v ∈ Rk}.

Proof. We have already seen that {v ⊗ T?(λ)T | v ∈ Rk} ⊆ T?(p). This
implies

{v ⊗T?(λ)T + null(f) | v ∈ Rk} ⊆ T?(p)/null(f).

In order to prove T?(p)/null(f) ⊆ {(v ⊗ T?(λ)T ) + null(f) | v ∈ Rk} it
suffices to show that any a(λ) ∈ Rk

1[λ] with a(λ)T τ(λ) = ηp(λ) for some

η ∈ R has the form a(λ) = ηT?(λ) + T̂?b with a particular vector b ∈ Rk−1.
The statement can be proven by contradiction similar to the approach in the
proof of Theorem 10. �

Theorem 10 gives a characterization of null(f), such that we have

T?(p) = {v ⊗T?(λ)T + B̃T̂?(λ)T | B̃ ∈ Rk×k−1, v ∈ Rk}
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and hence, Theorem 9 is proven given the case p(λ) is of degree k.
Now assume deg(p(λ)) = s < k and a(λ) ∈ Rk

1[λ] satisfies a(λ)τ(λ) =
ηp(λ) for some nonzero η ∈ R. Since a(λ) may once more be expressed in the
form (23), c̃ can be calculated from (24) which is completely independent of
λ. Hence, c̃T τ(λ) = ηp(λ) holds. This implies c̃T to be of the form

c̃T = η
[
0 0 · · · 0 as as−1 · · · a1 a0

]
with k − s leading zeros. This is just the vector T?(λ)T from Theorem 9 in
the case ak = ak−1 = . . . = as+1 = 0. It is easily seen that the expression
(19) is unique in both cases which completes the proof.

4.2. Proof of Theorem 7

In order to prove Theorem 7 it suffices to show that 1.⇒ 2.⇒ 3. ⇒ 4.
⇒ 1.. We will start with

1.⇒ 2. Under the condition rank([ (v⊗In) B ]) = kn the constant kn×kn
matrix [ (v ⊗ In) B ] is regular, i.e. invertible, so we may premultiply L(λ)
by [ (v ⊗ In) B ]−1 and calculate L̃(λ) := [ (v ⊗ In) B ]−1L(λ):

L̃(λ) =
[

(v ⊗ In) B
]−1(

v ⊗T(λ)T +BT̂ (λ)T
)

(25)

=



2Ak 0n . . . . . . 0n

0n 2In
...

...
. . .

...
... 2In 0n
0n . . . . . . 0n In

λ+


Ak−1 Ak−2 −Ak Ak−3 . . . A0

−In 0n −In 0n

0n
. . .

. . .
. . .

...
...

. . . −In 0n −In
0n . . . 0n −In 0n

.

As [ (v ⊗ In) B ] is unimodular, L(λ) is a strong linearization for P (λ) if
and only if L̃(λ) is a strong linearization for P (λ). Now consider the matrix

polynomial L̂(λ) := (Rk ⊗ In)L̃(λ)(Rk ⊗ In), where Rk =

[
1

. .
.

1

]
is the

reverse identity. It is seen easily, that L̂(λ) coincides with the matrix pencil
λL1−L0 (3). It is stated in [4], Theorem 2, and proven in [1], that L̂ is in fact
a strong linearization for P (λ), so L̃(λ) and L(λ) are strong linearizations
for P (λ) as well.

4.⇒ 1. Now assume L(λ) = (v ⊗ In)T(λ)T + BT̂ (λ)T to be regular and
rank(

[
(v ⊗ In) B

]
) < kn. Because of the rank-deficiency we may choose

a vector w ∈ Ckn with wT
[
(v ⊗ In) B

]
= 01×kn and observe that this
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immediately implies wTL(λ) = 0 independently of λ (see also the discussion
preceding Theorem 4). Therefore, L(λ) must be singular which contradicts
our assumption. Hence we must have rank(

[
(v ⊗ In) B

]
) = kn.

Since 2.⇒ 3. and 3.⇒ 4. are clear this completes the proof.

5. Concluding Remarks

A vector space T1(P ) of potential linearizations for matrix polynomials in
Tschebyscheff basis has been introduced guided by the ideas discussed in [13]
in the context of polynomials in monomial basis. A complete characterization
of all strong linearizations in T1(P ) has been derived. Comparing (9) and
(15) a structural resemblance between the elements on L1(P ) and T1(P ) is
apparent

space ansatz equation characterization

L1(P ) L(λ)(µ(λ)⊗ In) = v ⊗ P (λ) v ⊗M(λ)T +BM̂(λ)T

T1(P ) L(λ)(τ(λ)⊗ In) = v ⊗ P (λ) v ⊗T(λ)T +BT̂ (λ)T

Moreover, in both cases, the criterion rank([v⊗In) B]) = kn helps to identify
strong linearizations.

It seems possible to extend the results presented to matrix polynomials in
any orthogonal basis as well as to polynomials in bases which can be expressed
by ’easy’ to encode recursions such as the Newton basis. Moreover, with the
results obtained here, it is straightforward to adapt the results for L2 and
DL(P ) introduced and discussed in [13] to analogue spaces for polynomials
in Tschebyscheff basis.
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[15] Noferini, V., Pérez, J., 2015. Chebyshev-Fiedler pencils. MIMS EPrint
2015.90, Manchester Institute for Mathematical Sciences, The Univer-
sity of Manchester, UK.

[16] Noferini, V., Pérez, J., 2015. Chebyshev rootfinding via computing
eigenvalues of colleague matrices: when is it stable? MIMS EPrint
2015.24, Manchester Institute for Mathematical Sciences, University of
Manchester, UK.

[17] Van Beeumen, R., Meerbergen, K., Michiels, W., 2013. A rational
Krylov method based on Hermite interpolation for nonlinear eigenvalue
problems. SIAM J. Sci. Comput. 35 (1), a327–a350.

[18] Van Beeumen, R., Michiels, W., Meerbergen, K., 2015. Linearization of
Lagrange and Hermite interpolating matrix polynomials. IMA J. Numer.
Anal. 35 (2), 909–930.

[19] Winkler, J., 2003. A companion matrix resultant for Bernstein polyno-
mials. Linear Algebra Appl. 362, 153–175.

20


