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ON A NEW CLASS OF STRUCTURED MATRICES 

Y. EIDELMAN I AND I. GOHBERG 1 

In this paper we continue the study of structured matrices which admit a Hnear complexity inversion 

algorithm. The new class which is studied here appears naturally as the class of matrices of input output  

operators for discrete time dependent descriptor linear systems. The algebra of such operators is analyzed. 

Multiplication and inversion algorithms of linear complexity are presented and their implementation is 

illustrated. 

O. Introduction 

In this paper we continue the study of structured matrices which admit  a linear com- 

plexity inversion algorithm. Such algorithms exist for diagonal plus semiseparable matrices 

and band matrices. The new class which is studied here appears naturally as the class of 

matrices of input output  operators for descriptor linear systems and contains both diagonal 

plus semiseparable and band matrices. 

Let R be a square matrix of size 2i x .h r. Let n be a number  such that  the entries of 

lower triangular part  of the matrix R have the form 

a x / t i j = p l  ~jqj, l < j < i _ < N ,  (0.1) 

• 
where pl are n-dimensional rows, qj are n-dimensional columns, alj = at-1 " . a j + l ,  i 

j + 1, a x = I,~, ak are n x n matrices. The elements Pi (i = 2, . .  ,N) ,  qj (j = i+l, i  
1 , . . . , N -  1), ak (k = 2 , . . . , N -  1) are called lower generators of the matrix /~ and 

the number  n is called order of lower generators. Let nl  be a minimal value of n for 

which (0.1) holds. Then the matrix R is called lower quasiseparable of order nl .  The 

definition of upper quasiseparable matrix and upper generators is similar. If  a matrix R 

is lower quasiseparable of order nl and upper quasiseparable of order n2 then it is called 

quasiseparable of order (hi ,  n2). 

It is well known (see for instance [GL, p.92-95]) that  for a band matrix t7 the solution 

of the system/~x = y may be computed at the cost O(N) arithmetic operations. As was 

shown for instance by Asplund in [A] inverse to a band matrix with nonzero entries on 

1Thls research was supported in part  by THE ISRAEL SCIENCE FOUNDATION founded by The 
Israel Academy of Sciences and Humanities 
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external diagonals belongs to the class of diagonal plus semiseparable matrices. Let us 

remind that a matrix is said to be semiseparable of order (nl~n2) if it is composed of the 

lower triangular part  of some matrix of rank nl at most and of the upper triangular part  of 

another matrix of rank n2 at most. Probably the first time the linear complexity algorithm 

for inversion of diagonal plus semiseparable matrices was suggested by Gohberg, Kailath~ 

Koltracht in [GKK1], [GKK2] in assumption that the matrix R is strongly regular, i.e. all 

its leading minors are non-vanishing. In [GKK1], [GKK2] it was established that lower 

triangular and upper triangular factors of LDU factorization of diagonal plus semiseparable 

matrix R are also diagonal plus semiseparable and moreover generators of these factors 

may be expressed via generators of original matrix using linear complexity by N algorithm. 

Then the solution of every corresponding triangular system may be computed in O(N) 
operations. Another approach to inversion of diagonal plus semiseparable matrices was 

suggested by Gohberg and Kaashoek in [OK]. In [GK] such matrices arose as input-output 
ones for discrete linear systems with boundary conditions. In [GK] under the assumption 

that external coefficients of the system are nonvanishing an explicit inversion formula for 

the input output matrix was obtained. It was established by the authors in [EG2] that using 

the formula from [GK] one can obtain the solution of equation Ra = y for O(N) operations. 
This formula was analyzed in detail by the authors in [EG1], [EG2]. It turned out that one 

can obtain an equivalent representation of the entries of the inverse matrix which is valid 

without any limitations on the matrix except of invertihility, and moreover the relations 

obtained are a basis for linear complexity inversion algorithm. Analysis of representations 

obtained in [EG1], [EG2] showed that inverse to diagonal plus semiseparable matrix belongs 

in general to a wider class. This new class contains both diagonal plus semiseparable 

matrices and band matrices and is contained in the class of quasiseparable matrices. This 

is a second reason for our interest in this class. 

The object of the paper is the detailed study of the properties of quasiseparable matrices. 

It turns out that similarly to a diagonal plus semiseparable matrix a quasiseparable matrix 

of general form may be treated as an input output one for discrete time varying linear 

system with boundary conditions. However it is necessary that a part of state space 

equations of the system is a forward recursion and another part is a backward recursion. 

Such systems are called descriptor systems. We consider in detail the algebraic properties 

of the class of quasiseparable matrices. As one of the results one can mention the property 

that the inverse to quasiseparable matrix is again a quasiseparable matrix (a result which 

does not hold for diagonal plus semiseparable and band matrices). Linear complexity by N 

multiplication and inversion algorithms are developed in the paper. The implementation 

of these algorithms is illustrated by results of numerical experiments. 

The paper consists of 9 sections: 

1. Definitions 

2. Quasiseparable Matrices and Descriptor Systems 



Eidelman and Gohberg 295 

3. Character is t ic  Proper t ies  

4. Mult ipl icat ion 

5. Inversion 

6. Inversion Formula  and Algori thm in the Strongly Regular  Case 

7. The Case of Diagonal  Plus Semiseparable Matr ix  

8. The Case of Band  Matr ix  

9. Numerical  Exper iments  

Note tha t  inversion algori thms and their  implementa t ion  for quasiseparable  matr ices  of 

order  (1,1) will be considered in more detail  by the authors  in a la ter  paper .  

1. Definitions 

Let {ak},k = 1, . . .  , N  be a family of square matr ices  of the same size. For posit ive 

integers i , j  define the operat ion ai~ as follows: a- x. = a i -1  . . . a j+~  for N > i > j + 1 > 2, 

a~j=ai+l~ ak+l,k• =a~,k+l• = I f ~  a• 
for l < k < N .  

We consider a class of matr ices R for which either lower t r iangular  pa r t  or upper  tri- 

angular  par t  or both  of them has a special s t ructure.  Let R be a square ma t r ix  of size 

N • N .  Let n be a number  such tha t  entries of the  lower t r iangular  par t  of ma t r i x  R have 

the form 
a • R i j = p i  ijqj, l < j < i < N,  (1.1) 

where pl are n-dimensionM rows, qi are n-dimensional  columns, ak are n • n matr ices.  

The elements Pi (i = 2 , . . . , N ) ,  qj ( j  = 1 , . . . , N -  1), ak (k = 2 , . . . , N  - 1) are  called 

lower generators of the ma t r ix  R and the number  n is called order of lower generators. 
Let nl  be a min imal  value of n for which (1.1) holds. Then the ma t r ix  R is called lower 
quasiseparable of order nl.  

Let n be a number  such tha t  entries of the upper  t r iangular  pa r t  of ma t r i x  R have the 

form 

Rij = g~b~jhj, 1 <_ i < j < N, (1.2) 

where gl are n-dimensional  rows, hj are n-dimensional  columns, bk are n • n matr ices.  

The elements gl (i = 1 , . . . , N -  1), hj (j = 2 , . . . , N ) ,  b~ (k = 2 , . . . , N  - 1) are called 

upper generators of the mat r ix  R and the number  n is called order of upper generators. 

Let n2 be a minimal  value of n for which (1.2) holds. Then the ma t r ix  R is called upper 
quasiseparable of order n2. 

If  a ma t r ix  R of size N • N is lower quasiseparable of order  n l  and  upper  quasiseparable  

of order  n2 then it is called quasiseparable of order (nl, n~.). More precisely quasiseparable  

of order  (ha, n2) mat r ix  is a ma t r ix  of the form 

p~ ~jqj, l < j < i < N ,  

Rij = di, 1 < i = j < N, (1.3) 

glb~hj, 1 < i < j < N. 
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The e l emen t sp i  (i -- 2 , . . . , N ) ,  qj ( j  = 1 , . . . , N -  1), aR (k = 2 , . . . , N -  1); gi (i == 

1 , . ~  1), hj (j = 2 , . . . , N ) ,  b~ (k = 2 , . . . , N -  1); dR (k = 1 , . . . , N )  are called 

generators of the ma t r ix  R. 

The class under  consideration is a generalization of two well-known classes of s t ruc tured  

matrices:  band  matr ices  and diagonal plus semiseparable matr ices.  If  in (1.3) aR = a, bR = 

b (k -- 2 , . . . , N -  1) and a '~ = 0, b ~; = 0 then the mat r ix  /~ is a band  matr ix .  If 

aR = I ~ ,  bR = I,~ 2 (k = 2 , . . . , N -  1) then we obtain a diagonal  plus semiseparable  

matr ix .  

2. Q u a s i s e p a r a b l e  M a t r i c e s  a n d  D e s c r i p t o r  S y s t e m s  

Let us consider discrete t ime system of the following type: 

[ X R +I=aR x R +qR x k ,  k =  1 , . . . , N -  1, 

77k-1 = b~r/R + hRz~, k = N , . . . , 2 ,  

YR = PkXk + gk~'?R + dRxR, k = l , . . . N ,  

M~ X~ + M s  = 0 .  

(2.1) 

x N N Here x = ( R)R=a is the input  of the system, y = (YR)R=I is the ou tput ,  Xk and UR are 

the s ta te  space variables of sizes nl  and n2 correspondingly; the  coefficients are square 

matr ices  ak, bk of sizes n l ,  n2 correspondingly, vector columns qk, hk of sizes n l ,  n :  

respectively, vector rows PR, gk of sizes n l ,  n2 respectively, numbers  dR. The  bounda ry  

conditions are determined by two matrices M1, Ms of size rn x m,  where m = n l  + n2. 

The number  m is called the order of the system. 

In addi t ion to the matrices a~ ,  b~ we use here the matr ices  a/# = a~  al  for N > i > 2, 

4 = I . , ;  = % b N  for N -  1 > i >  1, I . , .  
The system (2.1) is said to have well posed boundary  conditions if the homogeneous 

equation 

{ Xk+l =aRxR~ k = l , . . . , N - l ~  

~?R-1 = bR~?k, k = N , . . . , 2 ~  (2.2) 

0 M1 ~1 ~?N 

has the trivial  solution only. This happens  if and  only if det M r 0, where 

Indeed the solution of (2.2) satisfies the relations 

X~: = a~x1,  k = 1 , . . . , N ;  r/R = b~TN, k = N , . . . , 1 .  (2.4) 
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In particular XN = G~NX1, ?]1 "= b~l'qN" The boundary conditions yield 

M1 b#~N \ 7IN ] nN 

If det M ~ 0 then X1 = 0• ~/g = 0 and by virtue of (2.4) the equation (2.2) has the trivial 

solution only. If (2.2) has the trivial solution only then (2.5) has the trivial solution only 

which implies det M ~ 0. 

In the case of well posed boundary conditions the output y is uniquely determAned by 
the input ~~ Hence a ]]near operator 2~ such that y = R~ is defined. The operator 1~ is 

called input output operator of the system (2.2). 

T h e o r e m  2.1. The matrix  R of  input output  operator of  the system of the form (2.1) 
with we]l posed boundary conditions is quasiseparable of order at most  (m, m).  Moreover 

let M be the matrix  given by (2.3) and 

(: :) - M - 1 M ]  = X2 ' Y2 ' 

where matrices X1, )(2, Y1, ]I2 have the sizes nl  • n2 ~ n~ • n2, nt  • n] , n2 x nl  respectively. 

Then the dements  

tl = [pi(a#i Yla~, i_ l  + In1) + gib#i Y~a~,i_l Pia#i X l  + gib~X2 ] ,  i = 2 , . . . ,  N, 

s j = [  qj ] , j =  1 , . . . , N - I ,  
L~jhj (2.z) (; o) 

Ik = I , ~  ' "" 

v~ = [p~a~Y1 + g&#r~ # ~  b ~ +g,(b,*X~b;~+~ + I ~ ) ]  i = 1, . , N -  1, p i a  i A 1  1 , i + 1  ~ ~ " "  

~ : [ % q J ]  j : 2 , . . .  N, 
L hj j '  ' (2.s) 

_ a # x x 

are generators of  the matrix R. 

Let us remark that qN and hi are not determined from (2.1) and hence they are free. 

Since by the definition • = 0 and b~l = 0 they may be chosen arbitrarily. a N N  

Proof. One can easily prove by induction that the solutions of the first and the second 
equations in (2.1) are given by 

# 
X k = % X l + f k ,  k = l , . . . , N ,  
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k - - 1  X where fk = Y~j=I a~jqjxj and 

V~=b~nN+r k=N,. . . ,1 ,  
where r = ~-]~7=~+~ b)~ hj:~j By virtue of boundary conditions we obtain 

which implies 

Hence it follows that  

x l  = X~r + Y l f N ,  VN = X2r + Y2fN. 

Thus for the state space variables we have 

nk = a~(X l r  + Yl fN)  4- f~, rlk = b~(Z2r + Y~fN) + r k = 1 , . . . , N .  

Next for the output  y we obtain 

y~ = pk[a~(Z~r + Y~fN) + f d  + d ~  + g~[b~(X=r + Y2fN) + r = 
N N k - i  

j=l j=l j=l 
N N N 

+~[b~(x~ Zb~hj~j + ~2 Z%q~j)+  Z b;~hj~j]. (2.10) 
j=~ j=l  j=k+~ 

Hence follow representations for entries of the input output  m a t r i x / L  In the case N _~ 
x x x i > j > 1 using the relations axj  = aN,i_laid we obtain 

R~j = p, Ia~(Xlb;jh~ + Y~a~jqj) + a~qj] + gib~(X~b;jhj + Y~a~jqj) = 
. # a x  x = [~(~Y1%~_~ + &,) + ~,~ Y~ ~ , ~ _ : ] ~  + ( ~ x l  + ~ x ~ ) ~ j  = ~ ,  

where t{, l}, sj are given by (2.7). Hence the matrix R is lower quasiseparable of order at 

most m with lower generators given by (2.7). 
b x b x For 1 < i < j __% N using the the relations blXj = 1,~+~ ~ we conclude that  

~,~ = ~,a7 (x~ ~ .~  + ~ )  + ~,[~? ( x ~ ; W  + Y ~ )  + ~ ~] = 

= (~,~Y~ + ~ , ~ ) ~  + [~,a~x~,~+~ + ~,(~x~b~,~+~ + •  = ~ w ,  

where vl, 5~, uj are given by (2.8). Hence the matrix R is upper quasiseparable of order 
at most m with upper generators given by (2.8). 

The desired relations (2.9) for diagonal entries )~ of the matrix R follow from (2.10) 
directly. 

Every quasiseparable of order (n~,n2) matrix R may be treated as an input output  one 

for descriptor system of the form (2.1) of order m = n~ + nz. 
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T h e o r e m  2.2. Le t  R be a quasiseparable o f  order (nl,  n2) m a t r i x  wi th  generators  Pl (i = 

2 , . . , N ) ,  qj ( j  = 1 , . . .  , N  - 1),  ~ (k = 2 , . . . , n  - 1); 9i  ( i  = 1 , . . .  , :V - 1) ,  h~ ( j  = 

2 , . . .  ,N) ,  b~ (k = 2 , . . .  , N  - 1); d~ (k = 1 , . . .  ,N) .  Let  a~, bN be arbi t rary  matr ices  and 

Pl, gN be arbi trary  vector rows o f  sizes n l  • n l ,  n2 • n2, n l ,  n2 correspondingIy. 

Then  R is i npu t  o u t p u t  m a t r i x  o f  the sy s t em 

I 
X k + l = a k x k + q k m k ,  k---- 1 , . . . , N - -  1, 

~?~_~ = b~z]~ + h~x~, k = N , . . . , 2 ,  

Yk = P~Xk + gk~k + dkmk~ k = l , . . . N ~  

X1 -~ O~ 7IN = O. 

(2.11) 

Theorem 2.2 is an inversion of Theorem 2.1 without assumption on order of descriptor 

system. 

Proof. The system (2.11) is a particular case of the system (2.1) with 

0) (0 ~ 0) 
0 ' M 2 =  i ~  2 . 

It  is easy to see that  in this case all the matrices X1, X2, Y1, Y2 in (2.6) are zeroes and 

therefore in (2.7)-(2.9) we obtain tl = (Pi 0 ) ,  ti = (0 g l ) ,  )~i -- dl. Hence by Theorem 

2.1 it follows that  the matrix with entries 

I ax Pi ijqJ, l ~ j < i < N ,  

Ri j  = dr l ~ i = j ~_ N ,  
x gib~jhi, l ~ i < j ~ N 

is an input output  one for the system (2.11). But these elements are exactly the entries 

of the quasiseparable matrix R with generators pl (i = 2 , . . . , N ) ,  qj (j = 1 , . . . , N -  

1), ak (k = 2 , . . . , N -  1); g~ (i = 1 , . . . , N  - 1), hy (j = 2 , . . . , N ) ,  bk (k = 2 , . . . , N -  
1); dk (k = 1 , . . . , N ) .  

One can see that  the coei~cients of the system (2.11) are exactly the generators of its 
input output  matrix. 

3. Characteristic Properties 

In this section we analyze in detail the properties of quasiseparable matrices. At first 

we show that  quasiseparability is equivalent to some recursive relations for maximal sub- 
matrices of lower triangular and upper triangular parts. 

L e m m a  3.1. Le t  R be a m a t r i x  o f  size N • N wi th  lower generators Pi (i = 2 , . . . , N ) ,  

qj (j = 1 , . . . , N -  1), ak (k = 2 , . . . , N  - 1) o f o r d e r n .  L e t  us de//ne matr ices  Qk (k = 
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1 , . . . , N  - 1) of sizes n x k forward recursively and matrices Pk (k = N , . . . ,  2) of sizes 
(N - k) x n backward recursively as follows: 

Q l = q l ,  Q ~ = ( a k Q k - 1  qk) ,  k = 2 , . . . , N - 1 ;  (3.1) 

PN = PN, Pk=(pk+lakPk ) , k = N - 1 , . . . , 2 .  (3.2) 

Then for maxlmal submatrices of the lower triangular part of the matrix I~ the following 
representations are valid: 

R ( k + I : N , I : k ) = P ~ + I Q h ,  k = 1 , . . . , N -  1. (3.3) 

Proof. The successive application of (3.1) yields 

Q k = ( a k Q k _ l  q k ) = ( a k a k - l Q ~ - 2  a~q~-i qk) . . . .  
(• 

= a k + l , l q l  * . .  

Similarly using (3.2) we obtain 

x 
ak+l,k_lqk-1 qk).  (3.4) 

[pk+2ak+2, a 

= = / pk+~a~+~ / = i \Pk+2ak+1 \Pk+~a~+2a~+1/ a x 

PN N,k 

Moreover the relation (1.1) yields 

Pk+l k+l,lql 
/~(k + i: N , I :  k) = i 

\ PNa~v,lql 

�9 .. Pk+~qk ) 

�9 . o  " 

a • 
�9 . .  PN N , k q k  

k = 1 , . . . , N -  1. 

(3.5) 

_ R ( k + l : N , l : k ) =  

Pk+l 
a N 

Pk+2 k-t-2,k 

x 
pNaN,k 

�9 ( a L l , l q l  . . .  a L ~ , ~ - l q k - 1  q ~ ) = P ~ + I Q k .  

Then taking into consideration the equalities am, *• = am,kak+l,,x • for m > k > t one can 
conclude that 
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L e m m a  3.2.  Le t  Pl (i = 2 , . . � 9  be n -d imens ionaI  rows,  qj (j = 1 , . . . , N  - 1) n.- 

dimensional  co lumns ,  ak ( k = 2 , . . .  , N - 1) matr ices  o f  slze n x n .  L e t  us det~ne by  the  

reeursions (3.1), (3.2) the matrices Ok (k = 1 , . . . N  - 1) of  si~es ~ • k and the matrice~ 

Pk (k = N , . . . ,  2) of si~es ( N -  k) • ~. For a ~ a t r i x  R of si~e N • N let the reht io~s  (3.3) 
hold. 

T h e n p i  (i : 2 , . . .  ,N) ,  qj ( j  = 1 , . . .  , N - l ) ,  a~ (k = 2 , . . .  , N - l )  are lower generators  

for the  m a t r i x  R .  

Proof. Let us consider an arbi t rary  element R / j , i  > j of  ~he lower tr iangular par t  of  ~he 

matr ix  R. This element is the j - t h  entry in the first row of the submatr ix  R ( i  : N ,  1 : i -  1). 

From (3.3) we conclude tha t  R ( i  : N ,  1 : i - 1) = P i O i - ~ .  As was proved above the 
recursions (3.1), (3.2) for the matrices Pk, Ok imply (3.4), (3.5). Thus we obtain 

R ( i  : N ,  1 : i - 1) = 

P i  
a • 

P i + l  i + 1 , i ~ 1  

a • 
PN N,i-1 

�9 ( alX, lq l  

In part icular  we have 

R ( i , I : i - 1 )  �9 a • = P i  ( i , l q l  

• 
�9 . .  ai , i_2qi-2 q i - 1 )  = 

"a • 
Pz i , l q l  

= 

• 
\ pNaN,1 ql 

�9 . .  Piqi-1 I 

x 
� 9  p N a N , i _ l q i - 1  

x 
�9 . .  ai , jqi  . . .  q i - 1 ) .  

The j - t h  entry of this row is p la~q j  which means (1.1). Thus Pi, qj, ak are lower generators 
of R. 

Similarly one can prove the following assertions concerning the upper  tr iangular par t  of 
the mat r ix  R. 

L e r n m a  3.3. Let  R be a m a t r i x  o f  size N • N wi th  upper  generators  gi (i = 1 , . . . ,  N - 

1), hj ( j - - - -2 . . . .  ,N) ,  bk (k = 2 , . . . , N - 1 ) o f o r d e r n .  L e t  us define ma t r i ce s  Gk (k = 

1 , . . .  , N  - 1) o f  sizes k • n forward recurs ive ly  and matr i ces  Hk  (k = N , . . .  ,2)  o f  sizes 

n • ( N  - k) backward  recurs ive ly  as foflows: 

G l = g l ,  G k = ( G k - l b k ~  gk / '  k = 2 , . . . , N - 1 ;  (3.6) 

H g = h g ,  H k = ( h k  bkHk+l ) ,  k = N - l , . . . , 2 .  (3.7) 

Then  for m a x i m a l  submat r i ce s  o f  the  upper  tr iangular p a r t  o f  the  m a t r i x  R the  fol lowing 
represen ta t ions  are vaBd: 

• (1 :  k ,k  + 1:  N)  = GkH~:+I~ k ---- 1 . . . .  , N  - 1. (3.8) 
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L e m m a  3.4.  Let  gi (i = 1 . . . .  , N -  1) 

dimensional columns, bk (k ---- 2, o . . , N -  

recursions (3.8), (3.Z) the matri~es ak (k 
H~ (k = N , . . . , 2 )  of  sizes n • (N - k). 

(3.s) hold. 
Thengi  (i = 1 , . . . , N - 1 ) ,  hj  ( j  = 2 , . .  

for the matr ix  R.  

be n-dimensional rows, h i (j = 2 , . . . , N )  n- 

1) matrices of  size n x n. Let  us define by the 
= 1 , . . . N -  1) of  sizes k • n and  the matrices 

For a matr ix  R of size N • N let the relations 

. ,N ) ,  bk (k = 2 , . . .  , N - l )  are  upper generators 

Next we show using Lemmas 1-4 that  quasiseparabil i ty of a ma t r ix  may  be expressed 

in terms of rank of maximal  submatr ices  of lower t r iangular  and  upper  t r iangular  par ts .  

T h e o r e m  3.5.  A matr ix  R is lower quaslseparable of  order  nl  i f  and only i f  every sub- 

mat r ix  of  R entirely located in the lower triangular part o f  R has rank nl  at most  and at 

leas~ one of  such submatrices has rank equal to nl .  

A matr ix  R is upper quasiseparable of  order n2 i f  and only i f  every submatr lx  of  t~ 

entirely located in the upper triangular part of  R has rank n~ at mos t  and at least one of  

such submatrices has rank equM to n2. 

Proof. It  is sufficient to prove the assertion of the theorem for the lower t r iangular  pa r t  of 

the mat r ix  ~ .  

Assume tha t  every submat r ix  of R entirely located in the lower t r iangular  pa r t  of R has 

rank at most  n l .  In  par t icular  for maximal  submatr ices  we have 

rankR(k+1:N,l:k)=rk_<nl, k = l , . . . , N - 1 .  (3.9) 

Let us show tha t  the mat r ix  R has lower generators  of order n l .  

The  relat ion (3.9) yields for every mat r ix  R(k  + 1:  N,  1:  k) of the  size (Y  - k) • k the 

representat ion 

a(~ + 1: N, 1: ~) = V~+lWk, (3.10) 

where V~+I is a (N - k) x r~ matr ix ,  W~ is a rk • k mat r ix  and rank V~+I = rank Wk = rk. 

One can add zero columns to Vk+l and zero rows to Wk in order to obta in  (N  - k) x n l  

m a t r i c e s P , + l = [ V , + l  O ] and nl  • k matrices Qk = [ Wo~ ].  It easily follows from (3.10) 

tha t  P~+~, Qk satisfy (3.3). Let p~ be the first row of Pk and qk be the  last column of Qk. 

We should prove tha t  there exist matr ices  a~ of size n l  • n~ such tha t  (3.1), (3.2) hold. 

Then by Lemma 3.2 it will follow tha t  p~ (i = 2 , . . .  , N ) ,  qj ( j  = 1 , . . .  , N  - 1), a~ (k = 

2 , . . . ,  N -  1) are lower generators of R. 

For the previous block R(k  : N ,  1 : k - 1) we have 

R(k : N,  1 : k - 1) = VkWk-1 ,  

where rank/~(k  : N,  1 : k - 1) = rk-1 _<_ n~, Irk is a (N - k + 1) x rk-~ mat r ix ,  W~_I is a 

rk-1 • (k - 1) ma t r ix  and rank V,~ = rank W~-I  = rk-1 .  
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Let v~ be the  first row of the  mat r ix  Vk and wk be the last column of the  ma t r ix  W~. 

Then one can write down V~ = , WI~ = ( W~ Wk ) and obta in  

Vk+w ). R ( k :  N , I :  k -  1) = \V~W~_I  ' 

The submat r ix  R(k  + 1 : N ,  1 : k - 1) is a common par t  of the  blocks R(k  : N ,  1 : k - 1) 

R(k  + 1 : N ,  1 : k). For this pa r t  we have two representat ions  and thus one can conclude 

tha t  

V~W,-1 = Yk+lW~. (3.11) 

Let 15"~+1 be such a r~ • ( Y  - k) ma t r ix  tha t  Vk+~Vk+l = I,., and I~k-~ be such a 

(k - 1) x rk-~ ma t r ix  tha t  Wk-~l~k-~ = I~k_ ~. Mult iplying (3.11) by Vk+l from the left 

and by l/Vk-1 from the right we obtain 

- ! ! 

= w t ,  v ;  = v +:vi- ' ' - = w t w k _ l .  

Set a~ = Vk+IV~ = W~Wk-1.  The mat r ix  a~ here has the  sizes rk x rk-~ and satisfies 

the  relat ions 

Y~ = V~+14,  W ;  = 4 W ~ _ ~ .  (3.12) 

Next one can set 

a~ = ( a~ O~x(,~-~) '~ 
kO(,~_~)• 0(,~_~)• I " 

( P ~ , Q k  = ( Q ~  qk).  From ( 3 . 1 2 ) w e c o n c l u d e t h a t  Next one can write down Pk = 
\ ~ k y  

which implies (3.1), (3.2). 

Assume tha t  there exists a submat r ix  R ~ of R entirely located in the lower t r iangular  

pa r t  such tha t  r a n k R  ~ = n l .  The mat r ix  R ~ is a par t  of a certain R(ko + 1 : N,  1 : ko) 

and using (3.9) we obta in  

rankR(ko  + 1 : N ,  1 : ko) = n l .  (3.13) 

One can conclude from here tha t  n~ is the minimal  order  of generators  of the ma t r ix  R, 

tha t  is R is lower quasiseparahle of order  n l .  Indeed if it  is not  a case we obta in  by L e m m a  

3.1 tha t  every submat r ix  R(k  + 1 : N ,  1 : k) (k = 1 , . . .  , N  - 1) may  be represented in the  
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form (3.3), where Pk+z and Q~ has the sizes (N  - k) • n '  and  n '  • k correspondingly and 

n r < n l .  Hence follows tha t  rankR(k0 + 1 : N ,  1 : k0) < nl  which contradicts  (3.13). 

Let R be a lower quasiseparable of order n l  matr ix .  Then any submat r ix  R(k  § 1 : 

N,  1 : k), k = 1 , . . . , N -  1 by Lemma 1 has the fo rm/~(k  + 1 : N,  1 : k) = P~+IQ~, where 

Pk and Qk are matrices with the sizes (N  - k) • nl  and n l  x k correspondingly. Hence 

it follows tha t  r a n k R ( k  + 1 : N, 1 : k) _< n l .  Every s u b m a t r i x / ~  of R entirely located in 

the lower t r iangular  par t  of R is a submat r ix  of a certain R(ko + 1 : N,  1 : k0). Therefore 

r a n k / )  _< rankR(k0  + 1 : N,  1 : k0) _< n l .  Moreover at  least one of the  submatr ices  

R ( k + l  : N, 1 : k) = Pk+lQk has rank n l .  Indeed if it is not  the case then for every 

k = 1 , . . .  , N -  1 we have r a n k R ( k + l  : N,  1 : k) _ n t < n~ which as has been proved above 

implies tha t  the mat r ix  R is lower quasiseparable of order _< n r which is a contradict ion.  

4. Multiplication 

We consider here the propert ies  of the  product  of quasiseparahle matr ices  and  the 

produc t  of a quasiseparable mat r ix  by a vector. At first we show tha t  the  p roduc t  of two 

lower (upper)  quasiseparable matrices is lower (upper)  quasiseparable of order  the  sum of 

the orders of the factors at most .  

T h e o r e m  4.1.  Let R1, R2 be matrices of sizes N x N which are  lower quasiseparable of 

orders ml ,  nl correspondingly. Then the product R1R2 is Iower quasiseparable of order 

at most ml + nl. 

Let R1, R2 be matrices of sizes N x N which are upper quasiseparabIe of orders m2, n2 

correspondingly. Then the product Ra 1~2 is upper quasiseparable of order  at most m2 + n2. 

Proof. It is sufficient to prove the assertion of the theorem for the case of lower quasisep- 

arable  matrices.  

For any k = 1 , . . .  , N -  1 one can write down each of the matr ices  R1, R2, R1R2 in the 

form 

~ 1 , / / 2 =  2 , R 1 R 2 =  , B,+~ \ L~ Bk+ ~ z~ 

where A~, A~, X~ are principal  leading matr ices  of size k x k. F rom the condit ion of 

the theorem and Theorem 3.5 it follows tha t  r ankL~  _< m l ,  rank L~ _< n l .  Moreover the 

equali ty 
I 2 1 2 Zk = LkA ~ + Bk+IL k 

holds and  therefore 

rank Z~ < r a n k ( L ~ A ~ ) +  r a n k ( B L ~ L ~ )  < rankL~ + rankL~ < - ~  + n~. 

Thus the assert ion of the theorem follows by Theorem 3.5. 

Next we show how generators of the product  of two quasiseparable matr ices  may  be 

expressed explicit ly via generators  of the factors. 
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T h e o r e m  4.2.  Let R1, R2 be matrices of sizes N x N which are quasiseparable of orders 

( , ~ , , ~ : )  (n~,n~) respectively with generators V~ (i = 2 , . . . , N ) ,  q~ (j = 1 , . . . , N -  
1), a~ (k = 2 , . . . , N  - 1); gl (i = 1 , . . . , N -  1), h} (j = 2 , . . . , N ) ,  b~ (k = 2 , . . . , N  - 

(~ = 1 , . . . , N  - 1), ~ (~ = 2 , . . .  , g  - 1 ) i  d~ (k -= 1 , . . . , N )  and p~ (i = 2 , . . . , N ) ,  qi 

1); g~ (i = 1 , . . . , N -  1), h~ (j = 2 , . . . , N ) ,  b~ (k = 2 , . . . , N -  1); d~ (k = 1 , . . . , N )  
correspondingly. Then the generatorst~ (i = 2 , . . . , N ) ,  aj (j  = 1 , . . . , N -  1), 1~ (k = 

~ , . . . , N  - 1); ,,~ (~ = ~, . . .  , W  - ~), ~,~ ( j  = ~ , . . . , ~ ) ,  & (~ = 2 , . . . , N  - 1); :,~ (~ = 

1 , . . . ,  N )  of  the matrix  Q may  be given as foflows: 

~, = [gl 

1 2 1 2 t ] ~ ~ 2 a j T j h  j + q~dj (4.1) 
qj 

l i =  ai qiPl (4.2) 
0 a~ / '  

1 2 1 ~ hjdj  + fibiq j (4.3) 
PiTibi + d  i g i ] ,  u j~-  hi j ,  

1 h 2 1 2 1 2 Ai = Pi ~ ~ + d i  d i +  gl ~biql, (4.5) 

w h  e r e  
i - 1  N 

= -  a 1 qkgk(oki} ~ r E 1 x 1 = 2 x ~, ~ (  i~)• 1 ~ , . 2  , •  = (b i~ )  h ~ p ~ ( , ~ i )  . ( 4 . 6 )  
k = l  k = i + l  

Let us remark that  gl a=N, a~, h = ~, 1, p l ,  ~ ,  b ~ ,  q ~  are n o t  a e t e r m i . e a  f r o m  t h e  

definition of generators and hence they are free. Since by the definition T1 = 0 and 

~b n ----- 0 mentioned above parameters may  be chosen arbitrarily. We assume them to be 
zeroes. 

Proof. The entries of matrices R1, R2 have the form 

1 1 x 1 P~(~J) q3, 1<j<i<N, 
RI.. 1 , ,a = d ~ ,  i = j ,  

1 1 x 1 gi(bij ) hi ,  l < i < j < N 

and 
2 2 x 2 p~(a~j) qj, l < j < i < N ,  

R.  ~ . =  a~, i = j ,  
2 2 x 2 gi(bi~) hi, l _ < i < j < N  

respectively. For the entries Qij of the product  Q = R1R2 we obtain the following relations. 
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For i > j we have  

N j -1  
Qq = ~ 1 2 ~ik~kJ E 1 1 x 1 2 2 x 2 1 1 x 1 j = pi(ai~ ) qkgk(b~j) h j + p i ( a i j )  q jd2+ 

k = l  k = l  

i - -1  N 
+ E 1 1 X 1 2 2 X 2 1 2 2 X 2 

k = j + l  k = i + l  

By the definition of • operat ion for k < j we have 

( a ~ k ) x  = a I = a i 1 1 i . . .  a I 1 x 1 1 • ~-~ ~ L ~  ~_~ ~j+~j~j_~ ~+~ = (%) a j ( a j ~ )  

and similarly for k > i 

( 4 , )  • ~ i - ~  ~ 2 ~ . . . a ~  ~ •  2 • 
. . . .  a j+ l  = a~ - I  " " " a i + l a i a i - z  j+ l  = (aki) ai (a l j )  �9 

Thus we obtain 

j - 1  

k = l  

~ -1  N 
+ p l [ E  1 x 1 2 a 2  x 2 1 2 + 1 = (b~) h ~ ( ~ )  )~](.~) q~ 

k = j + l  k = { + l  

1 1 x 1 2 1 ,  4 1 2 1 2  i 2 2 X 2 + (d~Pi + ~r  q~. p~ (~)  P~ A~iqj 

In the last expression ~J,  eJ  are given by (4.6) and 

i - 1  

Aij E 1 x 1 2 2 x = (ai~) q~p~(aas) �9 
k= j+ l  

We have the relat ion 

Q~j =,~ ((~o)• A , s )  (4j) • 8j, 

where r~, sj  are given by (4.1). To obta in  desired representat ion for the lower t r iangular  

par t  of the ma t r ix  Q it remains to check tha t  

0 ( 4 D •  = I~j, (4 .7 )  

where the matr ices  lk are defined in (4.2). The proof  is by induction by i. The  case i = j + 1 

is trivial. Assume tha t  for k = j + 1 , . . .  , i  the assert ion has been proved. For k = i + 1 we 

h a v e  

qiPi ( a ) •  a 1 a l A  - -  1 2 t a 2  \ •  

l h l , j : z , l ~ =  : ( ~ 5 ) •  = 2 • �9 
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For the  right upper  element we have 

i - -1  
1 2 2 • 1 1 x 1 2 2 x alAijq_qlpi(aij)_ - . al ~ 1 x I 2 2 x 

= (aih) qkpk(akj) +(ai+l , i )  q ip i (a i j )  = 
k=j+l 

i--1 
~ .  a I X 1 2[ 2 ~X a l  • I 2," 2 ~X 

( i+1,~)  q~p~(a~j) + ( i + l , i )  qipi(ai~) = 
k : j + l  

i 

E 1 x 1 2 2 x = (ai+l,k) qkp~(a~j) = Ai+~,j, 

which completes the  proof  of  (4.7). 

For i = j we have relations 

N i - 1  N 

,k~ : Qi, = E Tl, 2 = pi(E(aik)l 1 • q~:gk(bkl)l 2 2 X)h i2 + didi + __ ~ (bik)1 • 2 2 X)qi2 
k=l  k=l  k = i + l  

from which (4.5) follows. 

For i < j we have 

5--1  
1 1 x 1 2 2 1 2 2 x 2 

k = l  

i - 1  N 
1 1 x 1 2 2 x 2 1 1 • I j g~(bik ) hkgt:(bki) hj  + g i ( b q )  h id  2 + E gi(bik)l 1 Xh~pt:(al:j 2 2 •  + 

k~-j+l k = i + l  

By the definition of x operat ion for k < i we have 

(b~ j )  • = b ~ + l  2 1,2 1,21,2 b2 2 • 2 2 • 
�9 "'bj-1 : b~+l j -1  �9 - . v ~ _ l v ~ v i + ~  . . . .  (bkl )  bl (b i j )  

and similarly for k > j 

(b~,) • b~+1 b~_~ i ~i ~i~i . . . . .  bi+l . . .  ~J-lvJ~'J+l b~_l 1 x 1 . . . .  ( b~ j )  b~ 1 • ( b j k )  �9 

Thus we obta in  

j--1 
I I x 1 2 2 X 2 1 2 2 x 2 

k = l  

j -1  N 
+ g ~ [ ~  1 • 1 2  2 • 2 +  1 1 • 1 2  (b~) A~g~(b~)]A s g~(b~s) [hJds +b}( ~ (b~)1 • ~ • 

k = i + l  k = j + l  
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Using expressions ~i,  r from (4.6) and denoting Fb. = E~-z+i(b~)Xhkp4(bkj  ) a  2 2 x one can 

conclude that 

, i b 2 i 2 2 x 2 iT, h 2 i i X(hiH2 i 2 g~j = ~p~ ~ +d~g~)(b~) h i +g~i ~ +g~(b~) ,._~_~ + bir = 

= v~ ((b~)• Dij 

where vl, u j  are given by (4.3). One can check in the same way as in the proof of (4.7) 

that  

) ~;j Pi j  x 
(b j) • = 

where 54 are defined in (4.4). Thus the proof of the ~heorem is completed. 

Based on Theorem 4.2 one can derive the following method for computing the generator,,; 

of the product  Q = RzR2.  

A l g o r i t h m  4,3. 

1. Set a I = O, h~ = O, pl  = O, b~ = 0 (as was ment ioned above these parameters  couId 

be chosen arbitrarily). 

Set ~1 = 0m~x,~2 and  for k = 1 , . . .  , N  - 1 compute  recursiveiy 

a 1 h 2 1 2 1 b 2 +  d 1 2 a 4 =  kr176 4+q4dk ,  0 4 = p 4 ~  ~ 4gk, 

1 2 (4.8) 

Set 

qk 

2. Set  gin = O, a }  = O, biN = O, q2 N = 0 (as was ment ioned above these parameters  

could be chosen arbitrarily). 

Set  ~bN = 0 ~  x ~  and for k = N , . . . ,  2 compute  recursively 

~k 1 2 1 2 1 2 b I_L 2 = dkP4 + gkCkak, 'q4 = hkd4 4- kwkqk~ 

r  " 2 1 2 = bkCka k + hkpk. (4.9) 

Set 

t k  = 

3. F o r k  = 1 , . . . ~ N  compute  

~4], u4=[h~J.Lr/4 

1 h 2 1 z 1 ,~k = Pk~k k + d~dk + gkr 
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1 2 1 2 4. For k = 2 , . . . , N  - 1 c o m p u t e  z~ = q~p~, w~ = h~g~ and set  

(o l~ = a2 ~ , 5~ = b ~ 

To justify this algori thm one should only check that  auxiliary matrices ~i,  ~ satisfy 

recursive relations (4.S), (4.9). Indeed it fonows directly from (4.6) that  

i 
~ " ~ / a l  ~X 1 2 t b 2  ~x 

~ai+l = 2_.~(~+~,~) q~g~(~,~+~) = 
k = l  

i--1 
1 x 1 2 2 • 2 / 1 ~x 1 2 ~ 2  ~X = a i l ( Z ( a i k )  q~g~(b~i) )bi + (ai+~,i) q i g l  (oi,i+~) = 

k = l  

1 2 1 2 = a ~ i b ~  + q ~ g i ,  i = 1 , 2 , . . . N - 1  

and 

r  = O, 

N 
1 • 1 2 2 • r = ~ ( b ~ _ l , ~ )  h ~ p ~ ( ~ , , _ l )  = 

k = i  

N 
1 1 • 1 2 2 X 2 1 X~I 2[ 2 ~X = b i ( ~ ( b i ~  ) hkpk(aki  ) )ai -b (bi,i+l) n ip i (a i+ l , i )  = 

k = i  

bid, a s 1 2 = i ~ i  ~ +h~p~ ,  i = N , N - 1 , . . . 2 .  

Algorithm 4.3 does not contain embedding loops and therefore has linear complexity by 

N.  The exact number  of flops in this algorithm m a y  be computed  easily. Indeed consider 
1 2 for instance the computa t ion  of the element ak.  The operation qkdk is a product  of a vector 

of size rnl by a number  and hence requires ml  flops. The product  ~kh~ as a product  of a 

matr ix  of size ml  x n2 by a vector of size n2 requires rnln2 flops. Next the product  a~(~khk)l  2 

will take m~ flops. Thus the total  complexity for computat ion of ak is m l  + m l n 2  + ra~. 

Similarly we obtain tha t  computat ion of the variables 0k, zk, ~k+l,  ilk, ~ ,  wk, r  A~ 

requires correspondingly n2 -k m l n 2  + n22, m i n i ,  m l n 2  + m l n ~  q- m2n2 ,  n l  q- n l m ~  + 

~I, - ~  + ~ 1 - ~  +rag,  . ~ ,  ~ lm~ + ~1.~ + ~I .~ ,  . ~  + . ~  + ~  + ~  + 1 flops. Thus 
the total  complexity of Algorithm 4.3 is (m~n2 --kmlr~ 22-km2n 1 2  _.knlrn22 q_m~_kn~+m22+n~.q_ 

flops. 

Let us consider now an algorithm for multiplication of a quasiseparable mat r ix  by a 
vector and show that  this algorithm has linear complexity by N in contrast  to O ( N  2) in 

the case of a mat r ix  of a general form. Let R be a quasiseparable mat r ix  of order ( n l , n 2 )  

with generators Pi (i = 2 , . . . , N ) ,  qj (j = 1 , . . . , N  - 1), a~ (k = 2 , . . . , N  - 1); gi (i = 

1 , . . . , N -  1), hj (j = 2 , . . . , N ) ,  bk (k = 2 , . . . , N -  1); dk (k = 1 , . . . , N ) .  It means that  
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entries of the ma t r ix  R have the form 

pi ijqJ, 1 <_j < i <_N, 

Ri,j = d~ i = j ,  
b X - -  - -  gi ijhJ, l < i < j < N.  

The produc t  y = / ~ x  of the mat r ix  R by the vector ~ is found as y = yL + yD + yG, where 

yL = RLx,  yD : RDZ~ yU = RUZ and RL~ RD~ RU are correspondingly lower t r iangular ,  

diagonal and upper  t r iangular  par ts  of the mat r ix  R~ 

For yL we have yL = 0 and for i ~ 2 

where 

yL = plzl, 

i - - 1  

j= i  

Moreover zl satisfies the recursive relations 

i i--i 

zi+l = ~ ar+i,jqjmj = ai ~ a~qj~j  Jr ai+l,~qi~i = alzl + qi$1. 
j=i j=i 

Similar relations hold for the upper  t r iangular  par t ,  i.e. for the yU. 

Hence for y = / ~ z  we have the following algori thm. 

A l g o r i t h m  4.4. 

1. Set ai = O. Start with y~ = 09 zi = 0~lxi  and for i = 2 , . . . ,  N compute recursively 

zi = ai- lZi-1 ~- qi- lXi-1,  

yL plzi. 

2. Compute  for i = 1 , . . .  ~N 

yg  m dlxi. 

3. Set bN = O. Start with y ~  = 0, WN -- 0 ~ x i  and f o r i  -- N - I , . . . , 1  compute 
recursively 

4. Compute  vector y 

wl = bi+iwi+i  + hi+imi+i,  

yu  = giwi. 

y = yL +yD + yUo 

Here we used tha t  since zi = 0, WN = 0 the pa ramete r s  a i ,  bN may  he chosen arbi- 
trarily. 

An easy calculation shows tha t  this algori thm requires (n~ + 2hi +ng  + 2n2 + 1 ) ( N -  1) + 1 
flops. 
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5. Inversion 

In this section we s tudy inversion of quasiseparable matrices.  As a basis we use relat ions 

between minors of a ma t r ix  and its inverse. From these relations we obta in  easily tha t  

inverse to lower (upper)  quasiseparable mat r ix  is lower (upper)  quasiseparable  of the  same 

order 

L e m m a  5.1. Let l~ be invertible matrix of size N .  Let for some integers k, m,  n such 

that l ~_ m , k  ~_ N - 1 ,  n >_ O, m -  k § n ~ O the inequality 

r a n k a 0 :  k , m +  1:  N)  _< n (5.1) 

holds. 

Then for the inverse matrix the inequality 

r a n k R - : ( 1  : m , k  + 1:  N)  < m -  k + n .  (5.2) 

is valid. 

Proof. Let r be an integer such tha t  r > m - k q- n and R ~ be a rb i t r a ry  square submat r ix  

of the size r • r of the ma t r ix  R -1 (1 : m,  k + 1 : iV). The ma t r ix  R ~ may  be represented as 

JR~ = j R - l ( a , ~ ) ,  where a , ~  are sets of indices a -- ( i~ , . . .  , i~), fl = ( J l , . . .  ,J~) such tha t  

a C (1 :  rn), /3 C (/r + 1 :  N) .  By the well known formula (see for instance [G, p. 17]) we 
have 

I d e t n - l ( ~ , ~ ) l -  1 I de~ JR~ I act R(~', ~')I, (5.3) 

where a ~ and t3' are the  complements  to a and  t3 correspondingly in ( 1 , . . .  ,N ) .  The 

matrix JR(Z',~') has the si~e ( N -  r) • ( N -  r). Moreover we have ~' ~ { 1 , . . . , k } ,  
8 '  D ( r e + l , . . . ,  N )  from which follows tha t  JR(~', a ' )  contains the  ma t r ix  R(1 : k, m + l  : N )  

with size k • (N  - m) and rank at most  n. Since the addi t ion of the column or of the row 

to a ma t r ix  m a y  increase its rank on one at  most we conclude tha t  

rankjR(~',a')  < n + [ ( N - r ) - k ] + [ ( N - r ) - ( N - m ) ]  = ( N - r ) - [ r - ( m + n - k ) ]  < N - r .  

Thus we obta in  det R(fl ' ,a ' )  = 0 and by vir tue of (5.3) det jRo = 0 for any r such tha t  
r > m - k + n. Hence (5.2) follows. 

T h e o r e m  5.2. Let JR be a lower quasiseparable of order nl invertible matrix. Then the 
inverse matrix JR-1 is lower quasiseparable of order  n l .  

Let JR be an upper quasiseparable of order n: invertible matrix. Then the inverse matrix 
JR-1 is upper quasiseparabte of  order n2. 

Proof. It  is sufficient to consider the case of an upper  quasiseparable matr ix .  By Theorem 

3.5 if a ma t r ix  R of size N is upper  quasiseparable of order  n2 then  the relat ions 

r a n k R ( l : k , k + l : N ) ~ _ n 2 ,  k =  1 , . . . , N - 1  
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hold which imply (5.1) with n = n2, k --- 1 , . . .  , N -  1, m --- k. For the inverse matr ix  R -~ 

the application of L e m a n  5.1 yields 

r a n k . R - l ( l : k , k + l : N ) ~ n z ,  k = 1 , . . . , N -  1. 

Hence by L e m a n  5.1 the matr ix  R -1 is upper quasiseparable of order n~, where n~ < n2. 

Applying the same arguments  to the matr ix  R -1 we conclude that  n~ _~ n~ and thus R -1 

is upper quasiseparable of order n2. 

The well known Asplund's  theorem ([A]) concerning band  matrices and inverses to 

them may be derived easily from Lemma 5.1 for the case of entries from C. In  accordance 

with Asplund's  terminology a ma t r ix /~  N = {P~J}i,j=l is called upper band of order n if its 

elements satisfy pij 0 for j > i + n. A matr ix  _R N = = {Plj}i, j=l is called Green matr ix  of 

order n if every submatr ix  of R belonging to the part  for which j + n > i has rank n at, 

most. 

T h e o r e m  5.3 ( A s p l u n d ) .  An invertible square matr ix  is an upper band mat r i x  o f  order 

n i f  and only i f  its inverse is a Green matr ix  o f  order n. 

Proof. Let R be an upper band  matrix of order n2. It is equivalent to the assumption that 

R satisfies the relations 

R ( l : k , k + n 2 + l : N ) = O ,  k = l , . . . , N - n 2 - 1  

which implies (5.1) with n = 0, k = 1 , . . .  , N  - n2 - 1, m = k + n2. In other words (5.1) 

holds for m = n2 + 1 , . . .  , N  - 1, k = m - n 2 ,  n = 0. By virtue of L e m a n  5.1 we conclude 

that 

r a n k - R - l ( l : m , m - n 2 - k l : N )  < n 2 ,  m = n 2 + l , . . . , N - 1 .  (5.4) 

Let R ~ be a submatr ix  of the matr ix  R -1 belonging to the part  for which j + n > i. /~0 is 

a submatr ix  of a certain R - l ( 1  : m , m  - n 2  + 1 : N )  and hence has rank at most n2. Thus 

R -1 is a Green matr ix  of order n2. 

Let R -1 be a Green matr ix  of order n2. It means that  (5.4) holds. In other words the 

matrix R -1 satisfies (5.1) with m = 1 . . . .  , N - n 2  - 1, k = r e + n 2 ,  n = n2. Applying 

L e m a n  5.1 to the matrix R -1 we obtain 

ra=k_ (1 =0, 

and  thus the matr ix  R is an upper band  of order n2. 

6. I n v e r s i o n  F o r m u l a  a n d  A l g o r i t h m  i n  t h e  S t r o n g l y  R e g u l a r  C a s e  

We consider here the case when the matrix R is strongly regular, that is all its principal 

leading minors are nonvanishing. In this situation the generators of inverse matr ix  R -1 

may be expressed explicitly via generators of the original matrix. 
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T h e o r e m  6.1. Le t  R be a s trongly  regular quasiseparable m a t r i x  o f  order (nz ,n~) with  

g e n e r a t o r s p l  (i -- 2 , . . . , N ) ,  qj (j  = 1 , . . . , N - 1 ) ,  a~ (k = 2 , . . . , N - 1 ) ;  gi (i = 
1 , . . . , N -  1), h~ (j = 2 , . . . , N ) ,  b~ (k = 2 , . . . , g -  1); d~ (k = 1 , . . . , N ) .  

Then  generators t, (i = 2 , . . . , N ) ,  s~ ( j  = 1 , . . . , g -  1), l~ (k = 2 , . . . , N -  1); vi (i =: 
1 , . . . , N -  1), u i (j  = 2 , . . . , N ) ,  5~ (k = 2 , . . . , N - i ) ;  Aa (k = 1 , . . . , g )  o f  inverse 

m a t r i x  t~ -~ one can obtain as follows. The  elements  s~, v~, l ~  5~ are given via forward 

algori thm 

~1 = d l ,  s l  --~ q1~/11, Vl ---~ ~ ' 1 1 g l ,  A -~-- $191; (6 .1)  

7~ = d~ - p k f ~ - l  h~, 

s~ = [q~ - a~f~_lh~] ' /~  ~, l~ = a~ - s~p~, (6.2) 

v~ = 7/~[g~ - p~f~_~b~], 5~ = b~ - h~v~, (6.3) 

f~ = a~f~-~bk + [q~ -- a~f~-~hkI  "'7[ ~ �9 [g~ - P ~ f ~ - l b k l ,  k = 2 , . . . N  - t ;  (6.4) 

7N = dN -- P N f N - ~  hN 

and the d e m e n t s  A~, t~ ,u~ are given via backward Mgori thm 

AN --~ "/N 1, tN  = - -ANpN,  UN = --hNAN~ ZN = - -hNtN;  (6.5) 

A~ = 7~  1 + vkza+lsk ,  (6.6) 

tk = vkzk+lak  -- Akpk, uk = bkza+ls~ - hkA~, (6.7) 

zk = bkz~+lak - ukpk -- hkAkpk -- h~t~, k --- N -  1 , . . . 2 ;  (6.8) 

~1 = "~11 Ay VlZ2Sl ~ 

Here fh, zk are auxil iary matrices o f  sizes n l  • n2 and n2 • nz respect ively  and "~ is an 

auxil iary scMar variable. 

Proof. For k = 1 , . . . ,  N - 1 let A~ be the principal leading submatr ix  of size k • k of the 
mat r ix  R. Let us consider corresponding parti t ions of the mat r ix  R 

R =  A~ Bk+l " 

From L e m m a  3.1 we obtain A~ = Pk+lQk ,  where Pk, Qk are yielded recursively by the 

relations (3.1), (3.2). From L e m m a  3.3 we have A~ = GkHk+l ,  where Gk, Hk are given 
by (3.6), (3.7). Thus we have representations 

( (6.9) R = P ~ + I Q k  B ~ + I  " 

The strong regularity of the mat r ix  R implies tha t  every Ak is invertible. Moreover from 
the well known inversion formula (see for instance [H, p. 466-467]) we obtain 

R - 1  A ; 1  + (Ak G k ) ( H k + ~ B k + l P k + l ) ( Q k A k  ) - ( A ; 1 G k ) ( H ~ + I B [ ~ I )  (6.10) 
= - - ( J ~ ; ~ P k + ~ ) ( Q k A ;  ~ ) B~+~- -~ ' 
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where B~+I = B~+I - P~+z (Q~A-~ 1G~)Hk+I. 

Let us introduce the notations 

Vk = A~IG~, S~ = Q~A-~ 1, 

U~ = - H ~ ;  I, T~ = -~;~  P~, 

Then (6.10) turns into 

_R_ ~ = ( A-~ ~ + V~:z~+IS~ 
\ T~+I S~ 

f~ = Q~A~IG~; 

z~ = H~.B~I P~. 

V~U~+I__I ) . (6.11) 
B~+I 

Let us consider the matrices Sk~ Vk, fk of sizes nl  • /% k • n2, nl  • n2 respectively. 

Let sk, vk be the last column and the last row of the matrices Sk, Vk correspondingly. 

For k = 1 we have $1 = sl,  171 = vl and moreover Ax - d l ,  Q1 = ql, G1 = gl from which 

(6.1) directly follows. For k > 2 we have the following. Changing k by k - 1 in (6.9) we 

obtain 
( A~-I  Gk-IH~ 

R = \ P k Q k - 1  Bk ,]" 

Hence and from (6.9) it follows that  

( Ak-1 a k - l H ~ ( 1 )  ) 
A~ = \Pk(1 )Qk-1  B~(1,1) ' 

where Pk(1) is the first row of the matrix Pk, H~(1) is the first column of the matrix H~, 

Bk(1, 1) is the upper left corner entry of the matrix Bk. It is obvious that  Bk(1, 1) = dk. 

Moreover from (3.2) it follows Pk(1) = Pk and (3.7) implies H~(1) = hk. Thus we obtain 

a representation similar to (6.9) 

Ak = k,p~Q~-I d~ ,]" 

Applying (6.11) to Ak we obtain 

A~ 1 = ( A~I-I + Vk-I S -Vk - lh~" /~ l  , (6.12) 
--7~ P~: k-~ 7~ 

where 7k = d~ - p k f k - l h k .  
Taking into consideration (3.1) and the equality Qk-1Vk-1 --- f~ - i  we conclude that  

Sk = QkA-~ 1 = (a~Q~-i  q~ ) A ~  1 = 

= (akSk-1 + akf;c-1 (h~7~lp;:)S~-i - q~7~ipkS~-i  -a~ f ; : - lh~7~  1 + q~Tk 1 ) = 

= ( {a~ -- [q~ -- akfk_lhk]'7;~p~}Sk_l [qk - a~f~_lh~]',/[ 1 ).  
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Similarly from (3.6) and the equality Sk-IG~:-I  = fk -1  we obtain 

( Gk- lbk  ~ = 
Vk = A-~ 1G~ = A-~ 1 g~ ] 

A-~1_1Gk-1 bk + Vk-1 hk~/[ 1 ~ k h - 1  bk - gk] 

Finally for the matrix fk we have 

--= a~fa_~bk - ak f~_xhk7~[gk  - pk fk- lbk]  + qk"/[~[gk - p~fk-lb~] =- 

= , ~ A - 1  b~ + [q, - a , f , - i  h~]'~[ 1 [g~ - p , f , - l b d .  

Thus the elements ~ ,  v~, f~ satisfy relations (6.1)-(6.4). Moreover for the matrices S~, V~ 

we have recursions 

S l = s l ,  S k = ( l k S k - 1  s~) ,  k =  2 , . . . , N - 1 ;  (6.13) 

where lk, 8k axe given in (6.2), (6.3). 

Let us consider the matr ices/~-1,  Tk, Uk. Let Ak be the left upper corner entry of the 

mat r ix /~-z .  Notice that Ak is the k-th entry of the main diagonal of the matrix R -1. Let 

tk, uk be the first row and the first column of the matrices Tk, Uk correspondingly. 

The formula (6.11) for k = N - 1 yields BN 1 = */N 1 = AN. Next from the definition of 

Uk, Tk, zk for k = N we obtain (6.5). 

By virtue of (6.11) we have 

\ ~k+lak Bk+ 1 tk+lak Bk+ 1 ; 

Hence follows the relations (6.6) for the diagonal entries Ak and moreover using the 
equality Uk+IP~+I =- - z k + l  we obtain 

T,+I~ B,+ 1--1 j P,+la~ = T,+l(ak--~kp,) " 

Further using Hk+IT~+I = - z~+l  we obtain 

Ak vkUk+l 
u~ = - H ~ ;  1 = - (h~ b~H~+l ) T~+18~ ~i-~1 J = 

= ( b ~ z k + ~  - hkA~ (b~ - hkv~)Uk+l  ) .  
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For the matrices zk we have 

z ~ = H i B ~ I P k = - H ~ T ~ = - ( h k  b~H~+l)  Tk+fl~ = b k z ~ + ~ l k - h ~ t ~ =  

= b~z~+a(a~ - s~p~) - h~t~ = bkzk+lak -- [bkzk+l~k -- h~.k~]p~- 

- h~X~pk -- h~t~ = b~zk+~ak -- u~p~ -- h~A~p~ - hkt~. 

Thus the elements t~, u~, z~,)~ satisfy relations (6.5)-(6.8). Moreover for the matrices 

Tk, Uk we have recursions 

TN = tN: Tk = T}+lIk ' 

U N = U N ,  U k m ( U k  r k = N - 1 . . . , 2 .  (6.16) 

From the relations (6.13), (6.15) by virtue of Lemma 3.2 it follows that  the elements 

ti (i = 2 , . . . , N ) ,  8j (j = 1 , . . . , N -  1), l~ (k = 2 , . . . , N -  1) are lower generators of the 

inverse matrix R -1. Similarly from the relations (6.14), (6.16) by virtue of Lemma 3.4 it 

follows that  the elements v~ (i = 2 , . . . , N ) ,  u j  ( j  = 1 , . . . , N -  1), 5k (k = 2 , . . . , N  - 1) 

are upper generators of the inverse matrix R -1. The diagonal entries of ]{-~ are the 

elements )~k which are given in (6.5), (6.6).Thus the elements t~ (i = 2 , . . . , N ) ,  sj (j = 

1 , . . .  , N  - 1) ,  lk (k = 2 , . . . , N  - 1); v~ (i = 1 , . . .  , N  - 1),  ~ j  ( j  = 2 , . . .  , lV ) ,  8~ (k = 

2 , . . . ,  N - 1 ) ;  :k} (k = 1 , . . . ,  N) which are given by (6.1)-(6.8) are generators of the inverse 
matrix R -1 . 

Note that  in the case of diagonal plus semiseparable matrix the formulas for element.,; 

sk v~ in Theorem 6.1 coincide with expressions for a part  of generators of the factors i~ 

LDU factorization of the matrix R in [GKK1]. Hence one can conclude that  in this case 

some generators of the factors in LDU factorization and of the inverse matrix R -1 are the 

same. In the proof of Theorem 6.1 we clarify the meaning of the variable f~ which is used 

also in [GKK1]. The mentioned problems are related to results by Kailath and Sayed from 

[KS]. We intend to discuss them in detail in our next paper. 

The computat ion of generators of the matrix R -1 may be performed as follows. 

A l g o r i t h m  6.2. 

1.1.Set 71 = dl and compu te  

t .2 .For k = 2 , . . . ,  N - 1 compute  recursively 

*h P ~ = P k A - 1 ,  h ~ = h - l h ~ ,  7 , = d ~ - - p k  , ,  7 ~ = ~ [  1, 

t ! I v~ = g } - - p k b k ,  vk =3'kvk~ 

I ~ = a ~ - - s k p k ,  5 ~ = b ~ - h k v k ,  

f k  = a k f k - l b k  + s~vk. 
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1.3.Compute 

~N = dN -- p N f N - l h N ,  ~'~ = ~[N 1. 

Thus the elements ok, sk, Ik, 5k, ~k are  computed. 

2.1.Compute 

AN = 7'N, tN = --ANPN, UN : --hNAN~ ZN = --hNtN. 

2.2.For k = N - 1 , . . . ,  2 compute recursively 

II 8~  I I! v k = vkzk+l, = Zk+lSk, Ak = ~/k -}- vksk,  

pg = Akpk, h~ = hkA~, 
[ , k  ~ ff t t  

v ~ a k  - P k ,  u ~  = b ~  - h ~ ,  

h " zk = bkzk+~ak -- ukp} -- }Pk -- hktk. 

2.3. Compute  

A1 = 7~ + v l z 2 s l .  

Thus the eIements Ak, t~, u~ are computed. 

An easy calculation shows tha t  Algor i thm 6.2 requires ( N -  2) (2n~ n2 + 2nz n~ + 10nl n2 + 

2n~ § 2n 2 + 3nl  + 3n2 + 1) + 4nln2 + 3nl + 3n2 + 2 flops. 

Consequently using Algor i thm 6.2 for generators  of quasiseparable ma t r ix  R -1 and then 

applying Algor i thm 4.4 to the product  x = R - l y  we obta in  an a lgor i thm for solution of 

l inear e q u a t i o n / ~  = y of l inear complexity. 

7. The Case of Diagonal Plus Semiseparable Matrix 

By the definition a m a t r i x / ~  is said to be diagonal plus semiseparable of order (nl~n2) 

if its entries are specified as follows: 

{ piqj, l < j < i <_ N ,  

R~j= d~, l _< i= j_<N,  (7.1) 
g~hj, l < i < j <_ N.  

Here pl (i = 2 , . . . ,  N)  and qj ( j  = 1 , . . . ,  Y - 1) are correspondingly rows and columns of 

size h i ,  gl (i --- 1 , . . . , N  - t )  and hj ( j  = 2 , . . . , N )  are rows a~d columns of  size n2. In 

other words the ma t r ix  R is composed of the lower t r iangular  par t  of a ma t r ix  of rank nl  

at  most  and  from the upper  t r iangular  par t  of another  ma t r ix  of rank n2 at  most .  

Let us r emark  tha t  in general the inverse to diagonal  plus semiseparable  ma t r ix  is 

not diagonal  plus semiseparable of the same order. Indeed the inverse to a band  of order  

(nl ,  n2) matr ix  A with nonzero entries on external  diagonals is diagonal  plus semiseparable  

of order (n l ,n2)  matr ix  (see for instance [A]). But  it is easy to see tha t  for ra ther  large 
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sizes the matrix A cannot be diagonal plus semiseparable of order (nl,  n2). However from 

the theorem from [GK] it follows that if for a mat r ix /~  with entries of the form (7.1) the 

numbers Ik = dk - P k q k ,  gk = dk - g k h k ,  k = 2 , . . .  , N  - 1 are nonzeros then the inverse 

matr ix /~-~  is diagonal plus semiseparable of the same order as the matrix R. 

Every diagonal plus semiseparable matrix is quasiseparable with generators pi  (i = 

2 , . . . , N ) ,  qj (j = 1 , . . . , N - 1 ) ,  ak = Zn~, (k = 2,. .. , N  - 1 ) ;  gi (i = 1 , . . . , N -  

1), h j  ( j  = 2 , . . . , N ) ,  b~ = I= 2 (k = 2 , . . . , N  - 1); dk (k = 1 , . . 0 , N ) .  Hence all the 

algorithms obtained above are applicable here. 

Let R be a diagonal plus semiseparable strongly regular matrix. Then taking a~ = 

I=~, bk = I,~ 2 in Algorithm 6.2 we obtain the following method. 

A l g o r i t h m  7.1. 

L e t  1~ be  a s t rong Iy  regu lar  m a t r i x  o f  the  f o r m  (7.1). T h e n  the  g e n e r a t o r s  t~ (i = 

2 , . . . , N ) ,  s j  ( j  = 1 , . . . , N - 1 ) ,  Ik (k = 2 , . . . , N - I ) ;  v, (i = 1 , . . . , N - I ) ,  uj  (j = 

2 , . . .  ,N) ,  5k (k = 2 , . . .  , N  - 1); A~ (k = 1 , . . .  , N )  o f  the  quas i separab le  m a t r i x  R -~  are 

given  as fol lows.  

1 .1 .Se t  71 = dl  and c o m p u t e  

' 7 [  1, ' , 71 = s l = q 1 7 1 ,  v~ = 7 1 g l ,  f l  = s l g l .  

1 .2 .For k = 2 , . . . ,  N - 1 c o m p u t e  recurs i ve l y  

! 
pk = p k f ~ - a ,  h'k = I k - l h k ,  

t h I sk = qk -- k, 

t~ = I=~ -- skpk ,  

1 . 3 . C o m p u t e  

2 . 1 . C o m p u t e  

' h  7 ~ = d k - - P k  ~, 

= 

5k = I ~  - h k v k ,  

VN = d N  -- P N f N - x h N ,  VrN = ~[N 1 . 

I --!  

A N  = "YlV, 7"N -~ - - A N P N ,  UN = - -hN)~N,  ZN = - - h N t N .  

2.2.For k = N - 1 , . . . ,  2 c o m p u t e  recurs i ve l y  

H I I  I ~ V I I 8  
Vk ~ V k Z k + l ,  Sk ~ Z k + l S k ,  ~ k  ~ ~ k  T k k ,  

h it Zk : Zk+l -- UkPk -- kPk -- hk t k .  
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2.3.Compute 

~1 = 7~ + vlz2sl .  

The complexity of this algorithm is ( ] V - 2 ) ( l O n l n 2 + 3 n l + 3 n 2 + l ) + 4 n l n 2 + 3 n l + 3 n 2 §  

flops. 

8, T h e  C a s e  o f  B a n d  M a t r i x  

By the definition a matrix R N = {rij}i,j=l is said to be ~and of  order (n l ,n2)  i f r i j  = 0 
f o r i - j > n ~  a n d j - i > n 2 .  

Every band of order (nl,n=) matrix is quasiseparable of order (n l ,n2)  at most. Its 

generators may be defined as follows. Let J,~ be the square matrix of the size n of the form (010 
o o 0  : 

a n d e , ~ = [ 1  0 . . ,  0 ] b e t h e n - d i m e n s i o n a l r o w .  Let us set 

[ T'j -~- 1 '~" ] 
P i = e , u , i = 2 , . . . , N ,  qi = : , j = I ~ . . . , N - 1 ,  

[rJ+nl,J  d 
ak = J,~,  k = 2 , . . . N -  1; 

g~ --- [%~+1 ri , i+,~],  i 1 , . . . , N -  1, hj e T . . . . .  n=, J = 2 , . . . , N ,  

b ~ = J T  k 2,. N 1; 

d~ = r~k, k = I,...N. 

Here the entries rij for i > N or j > N are assumed to be zeros. 

It is easy to check that  such defined pl (i = 2 , . . . , N ) ,  qi (J = 1 , . . . , N -  1), ak (k = 

2, o . . , n -  1); g~ (i = I . . . .  , g -  1), h i (j  = 2 , . . . , N ) ,  b~ (k = 2 , . . . , N -  1); d~ (k -= 
1 , . . . ,  N)  are generators of the matrix R. Indeed for i > j we have 

: . [ i - - j - - 1  
a ~ j  = a i - x  �9 �9 "aj+l ~rtl " 

Hence for 0 < i - j < nl we obtain 

P~ ~iqJ = Pi = rij~ 

(l, • For i - j  > n l  we conclude that  p~ ijqj = pi" 0 .qj = 0. For j > i one can proceed similarly. 

Let R be a band strongly regular matrix. In this case the following algorithm is obtained 
from Algorithm 6.2, 
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A l g o r i t h m  8 . 1 ,  
r N Let R = { ij}i,j=l be a strongly regular band of order (n~, n2)  matrix. Then generators 

ti  (i = 2 , . . . , N ) ,  s j  ( j  = 1 , . . . , N - I ) ,  l~ (k = 2 , . . . , N - 1 ) ;  v, (i = 1 , . . . , N - I ) ,  ud ( j  = 

2 , . . . , N ) ,  5~ (k = 2 , . . .  , N  - 1); Ak (k = 1 , . . . ,N )  of the quasiseparable m a t r i x  R - I  a re  

g iven  as follows. 

1.1. Set 3'z = r11, qz = i , g l  = [7"12 . . .  r l , n 2 + l  ] a n d  compute 

Lrnl+l,l J 

n 1 f 
~I = ' / T  , s l  = ql"y~, v l  = ' l l g l ,  f l  = s l g l .  

1.2. F o r  k = 2 , . . . ,  N - 1 perform the following operations: 
1.2.1. Set 

]z k = 

rk'i-l'k ] 

qk = "  ~ , gk --- [Tk,k+l 

Lrk+n,,k a 

f k - 1  (2, 1) 

~fk_l inl ,1  ) ' P k = [ f k - l ( l ' 2 )  

~ ' k , k + n 2  ] 

f k - l ( 1 , n 2 )  o] 

a n d  compute 

7k = rk,~ - f k - l ( 1 , 1 ) ,  
t 1 ! t t J 

(s.1) 

(s.2) 

1.2.2. Set 

and compute 

1.2.3. Set 

I k = 

-~(I) 

--s~(nl -- 1) 
-~,(~i) 

( f ~ - 1 ( 2 , 2 )  , . .  f ~ - l ( 2 , n 2 )  0 

A 
~f~_1(~1 ,2)  . . .  f~_1(~1,~2) 0 
\ 0 . . .  0 0 

t v 

1 i) (-vi,1, : "'" 5 k =  
0 . . .  ' i 

0 , . ,  

(s.3) 

�9 . .  - v k ( n 2 - 1 )  - v k ( n 2 ) ' ~  

. . .  0 0 
- .  �9 ; �9 

. . .  i 0 

(8.4) 



Eidelman and Gohberg 321 

1.3. Compute  

7N = rN,N - f /v - l (1 ,  1), V~v = 7N ~. 

e T  T 2.1. Set A N : "/IN, t N = --ANen~ , uN = --AN n~, ZN = ANenzen~" 
2.2. For k = N - 1~. . . ,  2 perform the following opera$ions: 

2.2.1. Compute  

H - -  v f l q  v'k'=vkz~+l,  8 k = z ~ + l s ~ ,  A k = 7 ~ - r  k ~- 

2.2.2. Set 

2.2.3. Set 

i -A~ ] = " . " . . (8.5) t ,  f - A ,  ~ , ( 1 )  . .  ~ , ( ~ - 1 ) ] ,  ~ , =  

L ~ ( , , ~  - 1 )  

A~ -t~(2) ... -~(~) ) 
- ~ ( 2 )  z~+~(1 ,1 )  . . .  z ~ + ~ ( 1 , ~  - 1) 

(8.6)  Zk 
�9 o ~ . 

\ - ~ [ ( ~ )  ~ k + ~ ( ~ -  1 ,1 )  . . .  ~ k + 1 ( ~ 2 -  1 , ~  - 1) 

2.3. Compute  

A1 = "/~ -F vlz2sl .  

To justify this algorithm notice that  da ta  of Algori thm 6.2 in the case under consider- 

ation may  be expressed as follows. For the variables p~, h~ we have 

p ~ = [ f k - l ( 1 , 1 )  . . .  f k - l ( 1 , n z ) ] ,  h ~ =  i " 

[ fk-1 (n l ,  1) 

Next one can introduce the variables/Sk = Pkb~; hk = akh~, /~ = akfk-zbk and obtain 
I relations (8.1) and (8.3). From the relations dk ---- r~,k, p~hk = p~(1) = f ~ - l ( 1 , 1 )  the 

relation (8.2) follows. The relations (8.4) are obtained directly f rom p~ = e,,1, hk = 

e T ak = J,~l, b~ = J ~ .  Next for p~, h~ we obtain p~ = A~e~,  h~ A T Se[ 
II I? 

vk = v~a~, ~ = bk.s~, zk = a~zk+lbk. We have 

~k = [o r 

;~k ---- 

(i ~ 
zk+l (1,1) 

Zk+l(n2 - 1, 1) 

0 
8~(1) 

. . .  , , ; : (n] - l ) ] ,  ~ =  i 
I! Lak(n2 - 1) 

�9 .o 0 ) 
�9 .- z~+1(1,nl - 1) 
~ ' ,  ! " 

�9 .. zk+l(n2 - 1 ,nl  -- 1) 
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For t~ = 6k - p~, uk = ~k - h"~ the relations (8.5) are obtained. Finally from 

= -- e T enT=tk Z k  z k  - -  U k P k  - -  h k , ~ k P k  h k t k  = Z k  - -  u k e n l  - -  ,'~k n ~ . e n  a - -  

the relation (8.6) follows. 

The complexity of Algorithm 8.1 is (N - 2) (3nl n2 + 2nl + n2 + 1) + 2nl n2 + 2ha + n2 + 2 

flops. 

9. Numerical Experiments 

As an illustration we present here the results of computer experiments with designed 

algorithms. We investigate their behavior in floating point arithmetic and compare them 

with other available algorithms. We solved linear systems Rx = y for random values of 

input data p, q, g, h, d, y, a, b. The following algorithms were used: 

(1) GECP Gaussian eliminations with complete pivoting. 

(2) G E P P  Gaussian eliminations with partial pivoting. 

(3) GEl  Algorithm 6.2, 4.4. 

(4) GKK Gohberg-Kailath-Koltracht algorithm from [GKK1] 

(5) GK algorithm derived in [EG2] using Gohberg-Kaashoek formula 

(6) GE algorithm derived by the authors in [EG2] for diagonal plus 

semiseparable matrix of genera] form 

(7) GES Algorithm 7.1, 4.4 

All the algorithms (1)-(7) were implemented in the system MATLAB, version 4.2 with 

unit round-off error 2.2204 • 10 -16. The accuracy of the solutions obtained was estimated 

by the relations 

~ -  I I ~ a ~ c P l l '  c ~ -  Ilyll ' 

where ~ is the solution obtained by the corresponding algorithm, XaEC:- is the solution 

obtained by the GECP method which we assume to be exact. The values of the input data 

we obtained by using the random-function. In each case the condition number  ~2(R) of 

the original matrix was also computed. 

In all experiments performed the input data were taken randomly. The values of ele- 

ments of p, q, g~ h, y, were chosen in the range of 0 to 10, the values of a, b were in the 

range of 0 to 1 and the values of the diagonal d were taken from the range of 0 to 100. 

The data on time required by the above algorithms are also presented here. The authors 

have to make a proviso that  the test programs were not completely optimized for time 

performance. At the same time these data can provide an approximation for the real 

complexities of  the compared algorithms. 

1. The first series of experiments was performed in the general situation. We compare 

here G E P P  and GEl  algorithms. The results of computations are presented in Table 1. 
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Table 1. n l  = 2, n2 = 2 

N n2(R) r 

20 4e§  
50 2e+3 

100 8e+4 
150 5e+5 
200 l e + 6  

G E P P  G E l  
s C ~y 

le-14 2e-14 4e-15 3e-14 
2e-14 6e-1511e-14 3e-14 
le-14 3e-14 le-14 2e-13 
le-15 le-13 le-13 3e-13 
le-14 4e-13 le-12 8e-12 

The da t a  on t ime required by these algori thms are presented in the following table.  

Table 2. Time (seconds) 

N G E P P  G E l  

20 1.32 0.46 

50 11.16 0.92 

1O0 97.10 1.92 

150 270.92 2.86 

200 1812.9 8.93 

Thus one can conclude tha t  for approximate ly  the  same accuracy the t ime required for 

the a lgor i thm developed is essentially less than  for the s t anda rd  procedure.  

2. In the second series we invest igated the behavior  of a lgori thms developed for the case 

of diagonal  plus semiseparable  matr ix .  The  results are presented in Table 3. 

Table 3. 

G E P P  G K K  GK GE GES 
N ~ 2 ( R )  ~ ~ ~ ~ e ~ ~ ~ ~ ~ 

20 l e + 3  8e-15 9e-15 t7e-15 le-14 le-14 6e-14 5e-15 9e-14 le-14 6e-14 
50 4e+3 3e-14 8e-1511e-14 6e-14 5e-15 4e-14 6e-15 9e-14 5e-14 3e-13 
100 6e+4 4e-14 5e-1412e-14 6e-14 7e-10 7e-10 3e-14 2e-12 3e-13 9e-12 
150 9e+4 le-13 le-13 5e-14 2e-13 5e-14 4e-13 6e-14 l e - l l  le-13 l e - l l  
200 7e§ 5e-14 7e-14 3e-14 2e-13 2e-14 3e-13 3e-14 6e-13 le-14 3e-13 

The corresponding da t a  of t ime required are the following. 

Table 4. Time (seconds) 

N GECP 

20 0.88 

50 28.81 

100 190.00 

150 867.45 

200 1471 

G K K  GK GE GES 

0.42 0.50 1.57 0.34 

0.32 0.56 5.20 0.78 

0.86 2.42 18.00 9.16 

1.02 2.79 14.94 3.09 

1.35 3.31 22.18 4.98 
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[a] 

lEG1] 

lEG2] 

[G] 
[GK] 

[GKK1] 

[GKK2] 

[G~] 
[H] 
[Ks] 
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