Matrix pencils

Definition: Matrix pencil

A+ xB, with A, B € C™*", x indeterminate.

A pencil is called regular if n = m and det(A + xB) does not vanish
identically, i.e., if there is A € C for which it is square invertible.

An eigenvalue X is a value for which det(A+ AB) = 0.
Eigenvector, Jordan chains. . .

If det(A + xB) has degree less than n, the ‘missing’ eigenvalues are

said to be “at infinity". . | ©
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Eigenvalues of singular pencils

Can be defined via ‘unusual rank drop'. For instance:
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has typical rank 2. More formally, rankg(,)(A + xB) = 2.
But A+ 2B has rank 1.
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Canonical form

Equivalence relation ~: for each two square P € C™*™ Q@ € C™"
square invertible, A+ xB and P(A + xB)Q are said to be

equivalent. PAQ X@BQ

Equivalent = same eigenvalues, singularity. ..

If B is square nonsingular, there is little new in this theory:

A4 xB ~ J — xI, where J is the Jordan canonical form of —B A
(or —AB71).

Computing eigenvalues of A + xB <= computing eigenvalues of
—B1A -
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Theorem (Weierstrass canonical form)
-—-—"’\_

For a regular matrix pencil A+ xB € C[x]|"*", there are
nonsingular P, Q € C"" such that P(A + xB)Q is the direct sum
(blkdiag) of blocks of the forms
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Proof (sketch):

» Take c such that A 4 c¢B is invertible;
A+xB~ 1+ (x—c)(A+cB) !B
A+ xB ~ |+ (x — c) blkdiag(J, ..., Js),
Consider separately each [+ (x — ¢)Ji = I+ (x — ¢)(A + N).
If A =0, block ~ | —xM, where M = toeplitztriu(0, 1,...).
If A #0, block ~ M — xlI, where

M= toeplitztriu(%, %, c)
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One can define ‘Jordan chains’ (at A, at co...)



Generalized Schur factorization
Compare with generalized Schur (QZ) factorization:

Theorem

For any pair of square A, B € C™*™, one can find orthogonal @, Z
such that QAZ = Tx, QBZ = Tg are upper triangular (at the
same time).

(Ta)ii

Eigenvalues = (5. (incl. o0).



Theorem (Kronecker canonical form)

For a regutar matrix pencil A+ xB € C[x]™*", there are
nonsingular P € C™ ™ Q € C" " such that P(A + xB)Q is the
direct sum (blkdiag) of blocks of the form J\(x), Jso(X), and

c C[X]kx(kJrl)’ x . c C[X](k+1)><k,

(This includes 1 x 0 and 0 x 1 empty blocks).
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Proof (sketch): [Gantmacher book '59]
» Suppose (A + xB)v(x) = 0 for some v € C(x)"

» We may assume v = vy + vix + - - + vgx9 € C[x]", clearing
denominators.
A
B A

» Remark: singularity of (d + 1) x d .
B A

B
> Assume d minimal.

» We wish to show that the v; are linearly independent.
Suppose they are not so; then one can choose
a(x) = ag + aix + - - + aex® (of minimal degree e < d)
such that w(x) = a(x)v(x) has a zero coefficient we. But
then Awg =0, Aws + Bwy =0, ..., Bwe_1 = 0, which
contradicts minimality of d.

(cont.)



Take a basis that starts with the v;; this block-triangularizes

.| K(x)  L(x) :
the pencil: [ 0 M| where K(x) is a Kronecker block.

Moreover, by minimality of d, M(x) is such that d x (d — 1)
Mo

My Mo

: . is nonsingular.

My Mo

My

Using this nonsingularity, one can prove that the system of

Sylvester-like equations

I E||K(x) Lx)||l F| |K(kx) 0

0 |/ 0 M0 I| | 0 M)
is solvable (some work needed — details not given in the
course).



Kernel in C(x)

The (k x (k + 1)) Kronecker blocks have kernel
T

[(F1)fxk (mp)etkl e

The other blocks have full column rank in C(x).

(Remark: the kernel of blkdiag(C,D) can be obtained by the
kernels of C,D.)



