
Matrix pencils

Definition: Matrix pencil
A + xB, with A,B ∈ Cm×n, x indeterminate.

A pencil is called regular if n = m and det(A + xB) does not vanish
identically, i.e., if there is λ ∈ C for which it is square invertible.

An eigenvalue λ is a value for which det(A + λB) = 0.
Eigenvector, Jordan chains. . .

If det(A + xB) has degree less than n, the ‘missing’ eigenvalues are
said to be “at infinity”.

Example

[
x + 1 x

x x + 1

] [
1 x
0 1

]







Eigenvalues of singular pencils
Can be defined via ‘unusual rank drop’. For instance:

A + xB =


2 x 0
1 1 0
1 1 0
x x 0


has typical rank 2. More formally, rankC(x)(A + xB) = 2.
But A + 2B has rank 1.



Canonical form
Equivalence relation ∼: for each two square P ∈ Cm×m,Q ∈ Cn×n

square invertible, A + xB and P(A + xB)Q are said to be
equivalent.

Equivalent =⇒ same eigenvalues, singularity. . .

If B is square nonsingular, there is little new in this theory:
A + xB ∼ J − xI, where J is the Jordan canonical form of −B−1A
(or −AB−1).
Computing eigenvalues of A + xB ⇐⇒ computing eigenvalues of
−B−1A





Theorem (Weierstrass canonical form)
For a regular matrix pencil A + xB ∈ C[x ]n×n, there are
nonsingular P,Q ∈ Cn×n such that P(A + xB)Q is the direct sum
(blkdiag) of blocks of the forms

Jλ(x) =


λ 1

λ
. . .
. . . 1

λ

− xI, J∞(x) = I − x


0 1

0 . . .
. . . 1

0

 .



Proof (sketch):
I Take c such that A + cB is invertible;
I A + xB ∼ I + (x − c)(A + cB)−1B;
I A + xB ∼ I + (x − c) blkdiag(J1, . . . , Js),
I Consider separately each I + (x − c)Ji = I + (x − c)(λI + N).
I If λ = 0, block ∼ I − xM, where M = toeplitztriu(0, 1, . . . ).
I If λ 6= 0, block ∼ M − xI, where

M = toeplitztriu( cλ−1
λ , 1

λ2 , . . . ).









One can define ‘Jordan chains’ (at λ, at ∞. . . )



Generalized Schur factorization
Compare with generalized Schur (QZ) factorization:

Theorem
For any pair of square A,B ∈ Cm×m, one can find orthogonal Q,Z
such that QAZ = TA,QBZ = TB are upper triangular (at the
same time).

Eigenvalues = (TA)ii
(TB)ii

(incl. ∞).



Theorem (Kronecker canonical form)
For a regular matrix pencil A + xB ∈ C[x ]m×n, there are
nonsingular P ∈ Cm×m,Q ∈ Cn×n such that P(A + xB)Q is the
direct sum (blkdiag) of blocks of the form Jλ(x), J∞(x), and


1 x

1 x
. . . . . .

1 x

 ∈ C[x ]k×(k+1),



1
x 1

x . . .
. . . 1

x


∈ C[x ](k+1)×k ,

(This includes 1× 0 and 0× 1 empty blocks).



Examples[
0 0
0 0

]
,

[
0 2
0 1

]
,

0 1 x
1 0 0
x 0 0

 . . .



Proof (sketch): [Gantmacher book ’59]
I Suppose (A + xB)v(x) = 0 for some v ∈ C(x)n

I We may assume v = v0 + v1x + · · ·+ vdxd ∈ C[x ]n, clearing
denominators.

I Remark: singularity of (d + 1)× d


A
B A

. . . . . .
B A

B

.
I Assume d minimal.
I We wish to show that the vi are linearly independent.

Suppose they are not so; then one can choose
α(x) = α0 + α1x + · · ·+ αex e (of minimal degree e ≤ d)
such that w(x) = α(x)v(x) has a zero coefficient we . But
then Aw0 = 0, Aw1 + Bw0 = 0, . . . , Bwe−1 = 0, which
contradicts minimality of d .

(cont.)



I Take a basis that starts with the vi ; this block-triangularizes

the pencil:
[
K (x) L(x)
0 M(x)

]
, where K (x) is a Kronecker block.

I Moreover, by minimality of d , M(x) is such that d × (d − 1)
M0
M1 M0

. . . . . .
M1 M0

M1

 is nonsingular.

I Using this nonsingularity, one can prove that the system of
Sylvester-like equations[

I E
0 I

] [
K (x) L(x)
0 M(x)

] [
I F
0 I

]
=

[
K (x) 0
0 M(x)

]

is solvable (some work needed — details not given in the
course).



Kernel in C(x)
The (k × (k + 1)) Kronecker blocks have kernel[
(−1)kxk (−1)k−1xk−1 . . . −x 1

]T
.

The other blocks have full column rank in C(x).
(Remark: the kernel of blkdiag(C ,D) can be obtained by the
kernels of C ,D.)


