Newton's method for CARE

$$F(X) = A^*X + XA + Q - XGX$$
$$L_{F,X}(E) = A^*E + EA - EGX - XGE = E(A - GX) + (A - GX)^*E.$$
$$\widehat{L}_{F,X} = (A - GX)^T \otimes I + I \otimes (A - GX)^*.$$

If X_* is the stabilizing solution then $\Lambda(A - GX_*) \subset LHP \implies L_{F,X_*}$ is nonsingular.

Newton's method

For k = 0, 1, 2, ...

1. Solve
$$E(A - GX_k) + (A - GX_k)^*E = F(X_k)$$
 for E;

2. Set
$$X_{k+1} = X_k - E$$
.

$$F(x) = A^* X + XA + Q - XGX$$

$$A^* (X+E) + (X+E)A + Q - (X+E)G(X+E) - A^*X - XA - Q + XGX$$

$$= A^* E + EA - EGX - XGE + O(IIEII)$$

$$L_{F,x}(E)$$

$$= E(A - GX) + (A - GX)^*E$$

$$\hat{L}_{F,x} = (A - GX)^T \otimes I + I \otimes (A - GX)^*$$
Se X_x is le solutione stabilizionte delle ARE F(X)=0
A - GX = i stabile e La coloral. Updia quelli stabili di U.

$$(A-GX_{k})^{*}X_{k} + X_{k}(A-GX_{k}) = A^{*}X_{k} + XA - 2X_{k}GX_{k}^{(**)}$$

Softraggo (*) do (***), e viene

$$(A-GX_{k})^{*}(X_{k}-E) + (X_{k}-E)(A-GX_{k}) = -X_{k}GX_{k} - Q \prec 0$$

$$= X_{k+1} = X_{k+1}$$

$$-(X_{k}^{*})GX_{k} \ll 0,$$

oftenube
coningendo G

=0 Se A-GXK ho autovel. nel LHP, allore XK+170.

Rement. Se X, è le stabiliting solution delle Arrè, $\left(\dot{A} - G \times_{*} \right)^{*} \chi_{*} + \chi_{*} \left(A - G \times_{*} \right) = -Q - X_{*} G \times_{*}$ $A^*X_{*} - X_{*}GY_{*} + X_{*}A - X_{*}GX_{*} = -Q - X_{*}GX_{*}$ Quind Xx visalue l'eq. A. Lyspunov $(A-GX_{*})^{*}Z+Z(A-GX_{*})=-Q-X_{*}GX_{*}$ e A-GX, ₹ stobile => X, >0.

Newton's method

Note that
$$E(A - GX_k) + (A - GX_k)^*E = F(X_k)$$
 is equivalent to
 $X_{k+1}(A - GX_k) + (A - GX_k)^*X_{k+1} = -Q - X_kGX_k.$

This shows that $A - GX_k$ stable $\implies X_{k+1} \succeq 0$.

Actually, something stronger holds.

Monotonicity of Newton's method
is park du A: Xo
$$kX_1$$
 now subprevente
Theorem
Suppose X_0 is chosen such that $\Lambda(A - GX_0) \subset LHP$. Then,
 $X_1 \succeq X_2 \succeq X_3 \succeq \cdots \succeq X_* \succeq 0$. Moreover, $X_k \to X_*$ quadratically.
Proof (sketch) Coupled induction. Set $A_k := A - GX_k$:
 $(X_k - X_{k+1})A_k + A_k^*(X_k - X_{k+1}) = -(X_k - X_{k-1})G(X_k - X_{k-1})$
 $(X_* - X_{k+1})A_k + A_k^*(X_* - X_{k+1}) = -(X_* - X_k)G(X_* - X_k)$
hence A_k stable $\Longrightarrow X_k \succeq X_{k+1} \succeq X_*$.
 $\int (X_{k+1} - X_*)A_{k+1} + A_{k+1}^*(X_{k+1} - X_*)$

$$\int = -(X_{k+1} - X_k)G(X_{k+1} - X_k) - (X_{k+1} - X_*)G(X_{k+1} - X_*)$$

This does not prove immediately that A_{k+1} is stable (because the RHS is not $\prec 0$), but $A_{k+1}v = \lambda v$ with $\operatorname{Re} \lambda \ge 0$ gives $\Im X_{k+1}v = \Im X_k v$, hence if $A_k v = \lambda v$.

$$\begin{array}{c} A_{k} := A^{-} G X_{k} \\ A & Sobolie, X_{k} > X_{k+1} \\ A & Sobolie, X_{k} > X_{k+1} \\ A^{-} G X_{k} > X_{k+1} + X_{k+1} \\ A^{-} G X_{k} > X_{k+1} + X_{k+1} \\ A^{-} G X_{k} \\ A^{-} G X_{k-1} > X_{k} + X_{k} \\ A^{-} G X_{k-1} \\ A^{-} G X_{k-1} > X_{k} + X_{k} \\ A^{-} G X_{k-1} \\ A^{-} G X_{k} \\$$

B) Se Å_E Stabile, X_{E+1}
$$\chi_{X}$$

 $(A - G_{X_{E}})^{*} X_{X} + X_{X} (A - G_{X_{K}}) = A^{*} X_{X} + X_{X} A_{Y} - X_{K} G_{X_{K}} - X_{X} G_{X_{K}}$
 $= X_{X} G_{X_{X}} - Q - X_{K} G_{X_{X}} - X_{X} G_{X_{K}}$ (4)
 $I - G : (A - G_{X_{K}})^{*} (X_{K+1} - X_{X}) + (X_{K+1} - X_{X}) (A - G_{X_{K}}) =$
 $= -Q - X_{K} G_{X_{E}} - X_{X} G_{X_{X}} + Q + X_{K} G_{X_{X}} + X_{X} G_{X_{K}}$
 $= -(X_{K} - X_{X}) G(X_{K} - X_{X}).$
 $X_{K+1} - X_{X} = 0$

C) Se
$$X_{k}$$
 λX_{k} , allore $A-GX_{k}$ è stabile
 $(A-GX_{k})^{*}(X_{k+1}-X_{k})+(X_{k+1}-X_{k})(A-GX_{k})=(X_{k}-X_{k-1})G(X_{k}-X_{k-1})$
 $(A-GX_{k})^{*}(X_{k+1}-X_{k})+(X_{k+1}-X_{k})(A-GX_{k})=(X_{k}-X_{k})G(X_{k}-X_{k})$
 $(A-GX_{k})^{*}(X_{k+1}-X_{k})+(X_{k}-X_{k})(A-GX_{k})=(X_{k}-X_{k})G(X_{k}-X_{k})$
 $(\overline{A}-GX_{k})^{*}(X_{k}-X_{k})+(X_{k}-X_{k})(A-GX_{k})=(X_{k}-X_{k+1})G(X_{k}-X_{k+1})$
 $+(X_{k}-X_{k})G(X_{k}-X_{k})$
 $RHS_{i}O$ solutione $(O = A-GX_{k} \text{ stabile}?$
 $no! 2 \cdot 0 + 0 \cdot (2) = O$ non implice $2 < 0$...
Dobbiene dimetry rbs direttemente:

Suppositions
$$(A-GX_{k})U=AU$$
, con ReAND
Moldipli chions l'eq. Per U^{*} e U :
 $V^{*}(A-GX_{k})^{*}(X_{*}-X_{k})U+U^{*}(X_{*}-X_{k})(A-GX_{k})U=U^{*}(X_{k}-X_{k-1})G(X_{k}-X_{k-1})U$
 $+ U^{*}(X_{k}-X_{*})G(X_{k}-X_{k})U$
LHS = $U^{*}\overline{A}(X_{*}-X_{k})U+U^{*}(X_{*}-X_{k})AU = (\overline{A}+A)U^{*}(X_{*}-X_{*})U \leq O$

Ma RHS contiene metrice 7,0, quinde deviessere $v^*(X_{k-X_{k-1}})G(X_{k-X_{k-1}})v = 0$ G=BR'B, R>0

$$= \mathcal{O} \left(\left(X_{k} - X_{k-1} \right) \mathcal{V} = \mathcal{O} \right) = \mathcal{O} \left(\left(X_{k} - X_{k-1} \right) \mathcal{V} = \mathcal{O} \right)$$

Ma se
$$(A-GX_F)U=AV$$
 e $G(X_F-X_{K-1})U=O$,
allora $(A-GX_{K-1})U=AV$, e già $A-GX_{K-1}$
hon era stabile
Quind: il metado di Newton genera una
successione limitata zo converge a una soluzione
di ANE. Ad agni passo $A-GX_K$ è stabile, puindi
 $A-GX_{00}$ ha tutt: autovolori con Re $A \leq O$.
(e Xoo risolve CANE). Ma se Xoo risolve CARE,
gli entoval. di $A-GX_{00}$ sono un sottoinsiene di puelli di M,
e von ce ne sono can parte reale = 0.

Newton: wrap-up

- Use Bass's algorithm to find X_0 such that $A GX_0$ is stable
- Run Newton iterations till convergence.
- Expensive: each iteration requires a Schur form.

One final step of Newton can be used to 'correct' an inaccurate algorithm.