Salta al contenido principal
Español - Internacional (es)
Deutsch (de)
English (en)
Español - Internacional (es)
Français (fr)
Italiano (it)
En este momento está usando el acceso para invitados (
Acceder
)
Topic 1
Página Principal
Cursos
CDL Matematica
A.A. 2024 - 2025
Metodi di Approssimazione 2024 25
Topic 1
Perfilado de sección
◄
General
►
Topic 2
Seleccionar actividad 2025-02-27: Introduction. Vectorization, Kronecker product. Sylvester equations; the Bartels-Stewart algorithm.
2025-02-27: Introduction. Vectorization, Kronecker product. Sylvester equations; the Bartels-Stewart algorithm.
Archivo
PDF
4.5 MB
Seleccionar actividad sylv triangular
sylv triangular
Archivo
M
337 bytes
Seleccionar actividad 2025-02-28: conditioning of Sylvester equations, stability of the Bartels-Stewart algorithm
2025-02-28: conditioning of Sylvester equations, stability of the Bartels-Stewart algorithm
Archivo
PDF
726.6 KB
Seleccionar actividad 2025-03-06: Invariant subspaces. Definition and examples. Computing invariant subspaces by reordering Schur forms.
2025-03-06: Invariant subspaces. Definition and examples. Computing invariant subspaces by reordering Schur forms.
Archivo
PDF
4.6 MB
Seleccionar actividad 2025-03-07: Sensitivity of invariant subspaces; the Stewart-Sun theorem. Evaluating polynomials in a matrix in Jordan form; definition of functions of matrices.
2025-03-07: Sensitivity of invariant subspaces; the Stewart-Sun theorem. Evaluating polynomials in a matrix in Jordan form; definition of functions of matrices.
Archivo
PDF
6.3 MB
Seleccionar actividad 2025-03-13: Examples of matrix functions. Examples of multi-branch and non-primary functions. Some properties of matrix functions that descend from their expression as polynomials.
2025-03-13: Examples of matrix functions. Examples of multi-branch and non-primary functions. Some properties of matrix functions that descend from their expression as polynomials.
Archivo
PDF
4.5 MB
Seleccionar actividad 2025-03-20: more properties of matrix function. Convergence of Taylor expansions. Cauchy's integral formula. Fréchet derivatives with examples.
2025-03-20: more properties of matrix function. Convergence of Taylor expansions. Cauchy's integral formula. Fréchet derivatives with examples.
Archivo
PDF
4.6 MB
Seleccionar actividad 2025-03-21: block formula for the Fréchet derivative. Eigenvalues of Fréchet derivatives.
2025-03-21: block formula for the Fréchet derivative. Eigenvalues of Fréchet derivatives.
Archivo
PDF
6.3 MB
Seleccionar actividad 2025-03-27: example of low accuracy using Taylor series. The Parlett recurrence. The (blocked) Schur-Parlett method and funm.
2025-03-27: example of low accuracy using Taylor series. The Parlett recurrence. The (blocked) Schur-Parlett method and funm.
Archivo
PDF
421.5 KB
Seleccionar actividad 2025-03-28: automatic differentiation: the main ideas through matrix functions, Taylor expansions. Some quick remarks on the multivariate case and reverse mode.
2025-03-28: automatic differentiation: the main ideas through matrix functions, Taylor expansions. Some quick remarks on the multivariate case and reverse mode.
Archivo
PDF
4.5 MB
Seleccionar actividad 2025-04-03: the matrix exponential: properties; backward stability of Padé approximants; scaling and squaring.
2025-04-03: the matrix exponential: properties; backward stability of Padé approximants; scaling and squaring.
Archivo
PDF
2.6 MB
Seleccionar actividad 2025-04-04: the matrix sign function. Schur-Parlett method; the Newton iteration for the matrix sign: scalar version and convergence.
2025-04-04: the matrix sign function. Schur-Parlett method; the Newton iteration for the matrix sign: scalar version and convergence.
Archivo
PDF
2.7 MB
◄
General
Ir a...
Página principal del curso
Topic 2
Topic 3
Topic 4
Topic 5
Topic 6
Topic 7
►
Topic 2